4 research outputs found

    The interest of the Spanish network of investigators in back pain for rehabilitation physician

    No full text
    Background: The Spanish Back Pain Research Network (REIDE) brings together teams of researchers and clinicians who are interested in nonspecific neck and back pain (BP). Its objective is to improve the efficacy, safety, effectiveness, and efficiency of the clinical management of BP. Method: The Network welcomes clinicians and researchers interested in BP. The only requirement to become a member of REIDE is to take part in one of its research projects, and any member can propose a new one. The Network supports those projects that are of interest to two or more groups by assuming their administration and management, which allows the researchers to focus on their task. Its working method ensures methodological quality, a multidisciplinary approach, and the clinical relevance of those projects that are carried out. Results: 179 researchers from 11 areas in Spain are involved in REIDE, including experts in all of the relevant fields of BP research. Most Spanish studies on BP that have been published in international scientific journals come from the teams involved in REIDE, and it currently has 13 ongoing research projects. Conclusions: The Network can help to enhance research among rehabilitation specialists who are interested in BP, and can contribute to the development of research projects which are of interest to the specialty. © 2005 Sociedad Española de Rehabilitación y Medicina Física (SERMEF) y Elsevier España, S.L

    The interest of the Spanish network of investigators in back pain for rehabilitation physician

    No full text
    Background: The Spanish Back Pain Research Network (REIDE) brings together teams of researchers and clinicians who are interested in nonspecific neck and back pain (BP). Its objective is to improve the efficacy, safety, effectiveness, and efficiency of the clinical management of BP. Method: The Network welcomes clinicians and researchers interested in BP. The only requirement to become a member of REIDE is to take part in one of its research projects, and any member can propose a new one. The Network supports those projects that are of interest to two or more groups by assuming their administration and management, which allows the researchers to focus on their task. Its working method ensures methodological quality, a multidisciplinary approach, and the clinical relevance of those projects that are carried out. Results: 179 researchers from 11 areas in Spain are involved in REIDE, including experts in all of the relevant fields of BP research. Most Spanish studies on BP that have been published in international scientific journals come from the teams involved in REIDE, and it currently has 13 ongoing research projects. Conclusions: The Network can help to enhance research among rehabilitation specialists who are interested in BP, and can contribute to the development of research projects which are of interest to the specialty. © 2005 Sociedad Española de Rehabilitación y Medicina Física (SERMEF) y Elsevier España, S.L

    Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood-brain barrier.

    No full text
    This review considers efflux of substances from brain parenchyma quantified as values of clearances (CL, stated in µL g-1 min-1). Total clearance of a substance is the sum of clearance values for all available routes including perivascular pathways and the blood-brain barrier. Perivascular efflux contributes to the clearance of all water-soluble substances. Substances leaving via the perivascular routes may enter cerebrospinal fluid (CSF) or lymph. These routes are also involved in entry to the parenchyma from CSF. However, evidence demonstrating net fluid flow inwards along arteries and then outwards along veins (the glymphatic hypothesis) is still lacking. CLperivascular, that via perivascular routes, has been measured by following the fate of exogenously applied labelled tracer amounts of sucrose, inulin or serum albumin, which are not metabolized or eliminated across the blood-brain barrier. With these substances values of total CL ≅ 1 have been measured. Substances that are eliminated at least partly by other routes, i.e. across the blood-brain barrier, have higher total CL values. Substances crossing the blood-brain barrier may do so by passive, non-specific means with CLblood-brain barrier values ranging from  1000 for water and CO2. CLblood-brain barrier values for many small solutes are predictable from their oil/water partition and molecular weight. Transporters specific for glucose, lactate and many polar substrates facilitate efflux across the blood-brain barrier producing CLblood-brain barrier values > 50. The principal route for movement of Na+ and Cl- ions across the blood-brain barrier is probably paracellular through tight junctions between the brain endothelial cells producing CLblood-brain barrier values ~ 1. There are large fluxes of amino acids into and out of the brain across the blood-brain barrier but only small net fluxes have been observed suggesting substantial reuse of essential amino acids and α-ketoacids within the brain. Amyloid-β efflux, which is measurably faster than efflux of inulin, is primarily across the blood-brain barrier. Amyloid-β also leaves the brain parenchyma via perivascular efflux and this may be important as the route by which amyloid-β reaches arterial walls resulting in cerebral amyloid angiopathy

    Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood–brain barrier

    No full text
    corecore