4 research outputs found
Inducing Ni Sensitivity in the Ni Hyperaccumulator Plant Alyssum inflatum Nyárády (Brassicaceae) by Transforming with CAX1, a Vacuolar Membrane Calcium Transporter
The importance of calcium in nickel tolerance was studied in the nickel hyperaccumulator plant Alyssum inflatum by gene transformation of CAX1, a vacuolar membrane transporter that reduces cytosolic calcium. CAX1 from Arabidopsis thaliana with a CaMV35S promoter accompanying a kanamycin resistance gene was transferred into A. inflatum using Agrobacterium tumefaciens. Transformed calli were subcultured three times on kanamycin-rich media and transformation was confirmed by PCR using a specific primer for CAX1. At least 10 callus lines were used as a pool of transformed material. Both transformed and untransformed calli were treated with varying concentrations of either calcium (1–15 mM) or nickel (0– 500 lM) to compare their responses to those ions. Increased external calcium generally led to increased callus biomass, however, the increase was greater for untransformed callus. Further, increased external calcium led to increased callus calcium concentrations. Transformed callus was less nickel tolerant than untransformed callus: under increasing nickel concentrations callus relative growth rate was significantly less for transformed callus. Transformed callus also contained significantly less nickel than untransformed callus when exposed to the highest external nickel concentration (200 lM). We suggest that transformation with CAX1 decreased cytosolic calcium and resulted in decreased nickel tolerance. This in turn suggests that, at low cytosolic calcium concentrations, other nickel tolerance mechanisms (e.g., complexation and vacuolar sequestration) are insufficient for nickel tolerance. We propose that high cytosolic calcium is an important mechanism that results in nickel tolerance by nickel hyperaccumulator plants
Delimiting soil chemistry thresholds for nickel hyperaccumulator plants in Sabah (Malaysia)
Nickel hyperaccumulator plants have been the focus of considerable research because of their unique ecophysiological characteristics that can be exploited in phytomining technology. Comparatively little research has focussed on the soil chemistry of tropical nickel hyperaccumulator plants to date. This study aimed to elucidate whether the soil chemistry associated with nickel hyperaccumulator plants has distinctive characteristics that could be indicative of specific edaphic requirements. The soil chemistry associated with 18 different nickel hyperaccumulator plant species occurring in Sabah (Malaysia) was compared with local ultramafic soils where nickel hyperaccumulator plants were absent. The results showed that nickel hyperaccumulators in the study area were restricted to circum-neutral soils with relatively high phytoavailable calcium, magnesium and nickel concentrations. There appeared to be a ‘threshold response’ for the presence of nickel hyperaccumulator plants at >20 μg g−1 carboxylic-extractable nickel or >630 μg g−1 total nickel, and >pH 6.3 thereby delimiting their edaphic range. Two (not mutually exclusive) hypotheses were proposed to explain nickel hyperaccumulation on these soils: (1) hyperaccumulators excrete large amounts of root exudates thereby increasing nickel phytoavailability through intense rhizosphere mineral weathering; and (2) hyperaccumulators have extremely high nickel uptake efficiency thereby severely depleting nickel and stimulating re-supply of Ni from diffusion from labile Ni pools. It was concluded that since there was an association with soils with highly labile nickel pools, the available evidence primarily supports hypothesis (2
