83 research outputs found

    Dedifferentiated liposarcoma with leukocytosis. A case report of G-CSF-producing soft-tissue tumors, possible association with undifferentiated liposarcoma lineage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Granulocyte-colony-stimulating factor (G-CSF) functions as a hematopoietic growth factor and it is responsible for leukocytosis. G-CSF-producing tumors associated with leukocytosis include various types of malignancies.</p> <p>Case presentation</p> <p>We report the case of a 72-year-old man with dedifferentiated liposarcoma characterized by dedifferentiated components of malignant fibrous histiocytoma (MFH)-like features in addition to well-differentiated lipoma-like liposarcoma, arising from his upper arm. Preoperative laboratory data showed leukocytosis (103,700/μl). The serum level of G-CSF was also elevated (620 pg/ml [normal, <8 pg/ml]). Nine days after the surgery, the leukocytosis was relieved (WBC; 6,920/μl) and the elevated serum G-CSF level was significantly decreased (G-CSF; 12 pg/ml). One month after the surgery, leukocytosis gradually began to appear again. Three months after the surgery metastatic lung lesions were confirmed, and the patient subsequently died of respiratory problems. In the English literature regarding soft-tissue tumors with leukocytosis, including the current case, we could review a total of 6 cases of liposarcoma with leukocytosis. The subtype of these 6 liposarcoma cases was undifferentiated liposarcoma, comprising dedifferentiated liposarcoma in 4 cases and pleomorphic liposarcoma in 2 cases.</p> <p>Conclusion</p> <p>Since the only other soft-tissue tumor that was associated with leukocytosis was MFH, and since MFH is characterized by the absence of any specific differentiation, we would like to propose a possible association between G-CSF-producing soft-tissue tumors and an undifferentiated liposarcoma lineage, such as dedifferentiated liposarcoma or pleomorphic liposarcoma.</p

    Constitutive Phosphorylation of Aurora-A on Ser51 Induces Its Stabilization and Consequent Overexpression in Cancer

    Get PDF
    The serine/threonine kinase Aurora-A (Aur-A) is a proto-oncoprotein overexpressed in a wide range of human cancers. Overexpression of Aur-A is thought to be caused by gene amplification or mRNA overexpression. However, recent evidence revealed that the discrepancies between amplification of Aur-A and overexpression rates of Aur-A mRNA were observed in breast cancer, gastric cancer, hepatocellular carcinoma, and ovarian cancer. We found that aggressive head and neck cancers exhibited overexpression and stabilization of Aur-A protein without gene amplification or mRNA overexpression. Here we tested the hypothesis that aberration of the protein destruction system induces accumulation and consequently overexpression of Aur-A in cancer.Aur-A protein was ubiquitinylated by APC(Cdh1) and consequently degraded when cells exited mitosis, and phosphorylation of Aur-A on Ser51 was observed during mitosis. Phosphorylation of Aur-A on Ser51 inhibited its APC(Cdh1)-mediated ubiquitylation and consequent degradation. Interestingly, constitutive phosphorylation on Ser51 was observed in head and neck cancer cells with protein overexpression and stabilization. Indeed, phosphorylation on Ser51 was observed in head and neck cancer tissues with Aur-A protein overexpression. Moreover, an Aur-A Ser51 phospho-mimetic mutant displayed stabilization of protein during cell cycle progression and enhanced ability to cell transformation.Broadly, this study identifies a new mode of Aur-A overexpression in cancer through phosphorylation-dependent inhibition of its proteolysis in addition to gene amplification and mRNA overexpression. We suggest that the inhibition of Aur-A phosphorylation can represent a novel way to decrease Aur-A levels in cancer therapy

    Systems Biology Approaches Reveal a Specific Interferon-Inducible Signature in HTLV-1 Associated Myelopathy

    Get PDF
    Human T-lymphotropic virus type 1 (HTLV-1) is a retrovirus that persists lifelong in the host. In ∼4% of infected people, HTLV-1 causes a chronic disabling neuroinflammatory disease known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The pathogenesis of HAM/TSP is unknown and treatment remains ineffective. We used gene expression microarrays followed by flow cytometric and functional assays to investigate global changes in blood transcriptional profiles of HTLV-1-infected and seronegative individuals. We found that perturbations of the p53 signaling pathway were a hallmark of HTLV-1 infection. In contrast, a subset of interferon (IFN)-stimulated genes was over-expressed in patients with HAM/TSP but not in asymptomatic HTLV-1 carriers or patients with the clinically similar disease multiple sclerosis. The IFN-inducible signature was present in all circulating leukocytes and its intensity correlated with the clinical severity of HAM/TSP. Leukocytes from patients with HAM/TSP were primed to respond strongly to stimulation with exogenous IFN. However, while type I IFN suppressed expression of the HTLV-1 structural protein Gag it failed to suppress the highly immunogenic viral transcriptional transactivator Tax. We conclude that over-expression of a subset of IFN-stimulated genes in chronic HTLV-1 infection does not constitute an efficient host response but instead contributes to the development of HAM/TSP

    A Kinase-Phosphatase Network that Regulates Kinetochore-Microtubule Attachments and the SAC

    Get PDF

    ATP-binding cassette (ABC) transporters in normal and pathological lung

    Get PDF
    ATP-binding cassette (ABC) transporters are a family of transmembrane proteins that can transport a wide variety of substrates across biological membranes in an energy-dependent manner. Many ABC transporters such as P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) are highly expressed in bronchial epithelium. This review aims to give new insights in the possible functions of ABC molecules in the lung in view of their expression in different cell types. Furthermore, their role in protection against noxious compounds, e.g. air pollutants and cigarette smoke components, will be discussed as well as the (mal)function in normal and pathological lung. Several pulmonary drugs are substrates for ABC transporters and therefore, the delivery of these drugs to the site of action may be highly dependent on the presence and activity of many ABC transporters in several cell types. Three ABC transporters are known to play an important role in lung functioning. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene can cause cystic fibrosis, and mutations in ABCA1 and ABCA3 are responsible for respectively Tangier disease and fatal surfactant deficiency. The role of altered function of ABC transporters in highly prevalent pulmonary diseases such as asthma or chronic obstructive pulmonary disease (COPD) have hardly been investigated so far. We especially focused on polymorphisms, knock-out mice models and in vitro results of pulmonary research. Insight in the function of ABC transporters in the lung may open new ways to facilitate treatment of lung diseases
    corecore