153 research outputs found
Promoter methylation regulates cyclooxygenase expression in breast cancer
INTRODUCTION: Overexpression of cyclooxygenase (COX-2) is commonly observed in human cancers. In a murine model of metastatic breast cancer, we observed that COX-2 expression and enzyme activity were associated with enhanced tumorigenic and metastatic potential. In contrast to the high COX-2 expression in metastatic tumors, transplantation of poorly tumorigenic tumor cell lines to syngeneic mice results in less COX-2 expression and less COX-2 activity in vivo. Aberrant CpG island methylation, and subsequent silencing of the COX-2 promoter, has been observed in human cancer cell lines and in some human tumors of the gastrointestinal tract. METHODS: Using bisulfite modification and a methylation-specific PCR, we examined the methylation status of the COX-2 promoter in a series of four closely-related murine mammary tumors differing in COX-2 expression and metastatic potential. RESULTS: We showed that line 410, which does not express COX-2 in vivo, exhibited evidence of promoter methylation. Interestingly, the metastatic counterpart of this cell (line 410.4) displayed only the unmethylated COX-2 promoter, as did two additional cell lines (lines 66.1 and 67). The methylation patterns observed in vitro were maintained when these murine mammary tumor lines were transplanted to syngeneic mice. Treatment with the DNA demethylating agent 5-aza-deoxycytidine increased COX-2 mRNA, increased protein and increased enzyme activity (prostaglandin synthesis). CONCLUSIONS: These results indicate that COX-2 promoter methylation may be one mechanism by which tumor cells regulate COX-2 expression. Upregulation of COX-2 expression in closely related metastatic lesions versus nonmetastatic lesions may represent a shift towards the unmethylated phenotype
Wnt/β-Catenin-Signaling Modulates Megakaryopoiesis at the Megakaryocyte-Erythrocyte Progenitor Stage in the Hematopoietic System
The bone marrow (BM) hematopoietic system (HS) gives rise to blood cells originating from hematopoietic stem cells (HSCs), including megakaryocytes (MKs) and red blood cells (erythrocytes; RBCs). Many steps of the cell-fate decision remain to be elucidated, being important for cancer treatment. To explore the role of Wnt/β-catenin for MK and RBC differentiation, we activated β-catenin signaling in platelet-derived growth factor b (Pdgfb)-expressing cells of the HS using a Cre-lox approach (Ctnnb1BM-GOF). FACS analysis revealed that Pdgfb is mainly expressed by megakaryocytic progenitors (MKPs), MKs and platelets. Recombination resulted in a lethal phenotype in mutants (Ctnnb1BM-GOFwt/fl, Ctnnb1BM-GOFfl/fl) 3 weeks after tamoxifen injection, showing an increase in MKs in the BM and spleen, but no pronounced anemia despite reduced erythrocyte counts. BM transplantation (BMT) of Ctnnb1BM-GOF BM into lethally irradiated wildtype recipients (BMT-Ctnnb1BM-GOF) confirmed the megakaryocytic, but not the lethal phenotype. CFU-MK assays in vitro with BM cells of Ctnnb1BM-GOF mice supported MK skewing at the expense of erythroid colonies. Molecularly, the runt-related transcription factor 1 (RUNX1) mRNA, known to suppress erythropoiesis, was upregulated in Ctnnb1BM-GOF BM cells. In conclusion, β-catenin activation plays a key role in cell-fate decision favoring MK development at the expense of erythroid production
Tolfenamic Acid Induces Apoptosis and Growth Inhibition in Head and Neck Cancer: Involvement of NAG-1 Expression
Nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1) is induced by nonsteroidal anti-inflammatory drugs and possesses proapoptotic and antitumorigenic activities. Although tolfenamic acid (TA) induces apoptosis in head and neck cancer cells, the relationship between NAG-1 and TA has not been determined. This study investigated the induction of apoptosis in head and neck cancer cells treated by TA and the role of NAG-1 expression in this induction. TA reduced head and neck cancer cell viability in a dose-dependent manner and induced apoptosis. The induced apoptosis was coincident with the expression of NAG-1. Overexpression of NAG-1 enhanced the apoptotic effect of TA, whereas suppression of NAG-1 expression by small interfering RNA attenuated TA-induced apoptosis. TA significantly inhibited tumor formation as assessed by xenograft models, and this result accompanied the induction of apoptotic cells and NAG-1 expression in tumor tissue samples. Taken together, these results demonstrate that TA induces apoptosis via NAG-1 expression in head and neck squamous cell carcinoma, providing an additional mechanistic explanation for the apoptotic activity of TA
Activated macrophages promote Wnt signalling through tumour necrosis factor-α in gastric tumour cells
The activation of Wnt/β-catenin signalling has an important function in gastrointestinal tumorigenesis. It has been suggested that the promotion of Wnt/β-catenin activity beyond the threshold is important for carcinogenesis. We herein investigated the role of macrophages in the promotion of Wnt/β-catenin activity in gastric tumorigenesis. We found β-catenin nuclear accumulation in macrophage-infiltrated dysplastic mucosa of the K19-Wnt1 mouse stomach. Moreover, macrophage depletion in ApcΔ716 mice resulted in the suppression of intestinal tumorigenesis. These results suggested the role of macrophages in the activation of Wnt/β-catenin signalling, which thus leads to tumour development. Importantly, the conditioned medium of activated macrophages promoted Wnt/β-catenin signalling in gastric cancer cells, which was suppressed by the inhibition of tumour necrosis factor (TNF)-α. Furthermore, treatment with TNF-α induced glycogen synthase kinase 3β (GSK3β) phosphorylation, which resulted in the stabilization of β-catenin. We also found that Helicobacter infection in the K19-Wnt1 mouse stomach caused mucosal macrophage infiltration and nuclear β-catenin accumulation. These results suggest that macrophage-derived TNF-α promotes Wnt/β-catenin signalling through inhibition of GSK3β, which may contribute to tumour development in the gastric mucosa
Celecoxib concentration predicts decrease in prostaglandin E2 concentrations in nipple aspirate fluid from high risk women
<p>Abstract</p> <p>Background</p> <p>Epidemiologic studies suggest that long term low dose celecoxib use significantly lowers breast cancer risk. We previously demonstrated that 400 mg celecoxib taken twice daily for 2 weeks lowered circulating plasma and breast nipple aspirate fluid (NAF) prostaglandin (PG)E<sub>2 </sub>concentrations in post- but not premenopausal high risk women. We hypothesized that circulating concentrations of celecoxib influenced PGE<sub>2 </sub>response, and that plasma levels of the drug are influenced by menopausal status. To address these hypotheses, the aims of the study were to determine: 1) if circulating plasma concentrations of celecoxib correlated with the change in plasma or NAF PGE<sub>2 </sub>concentrations from baseline to end of treatment, and 2) whether menopausal status influenced circulating levels of celecoxib.</p> <p>Methods</p> <p>Matched NAF and plasma were collected from 46 high risk women who were administered celecoxib twice daily for two weeks, 20 subjects receiving 200 mg and 26 subjects 400 mg of the agent. NAF and plasma samples were collected before and 2 weeks after taking celecoxib.</p> <p>Results</p> <p>In women taking 400 mg bid celecoxib, plasma concentrations of the agent correlated inversely with the change in NAF PGE<sub>2 </sub>levels from pre- to posttreatment. Nonsignificant trends toward higher celecoxib levels were observed in post- compared to premenopausal women. There was a significant decrease in NAF but not plasma PGE<sub>2 </sub>concentrations in postmenopausal women who took 400 mg celecoxib (p = 0.03).</p> <p>Conclusion</p> <p>In high risk women taking 400 mg celecoxib twice daily, plasma concentrations of celecoxib correlated with downregulation of PGE<sub>2 </sub>production by breast tissue. Strategies synergistic with celecoxib to downregulate PGE<sub>2 </sub>are of interest, in order to minimize the celecoxib dose required to have an effect.</p
Inhibitor of cyclooxygenase-2 induces cell-cycle arrest in the epithelial cancer cell line via up-regulation of cyclin dependent kinase inhibitor p21
Cyclooxygenase-2 is the rate-limiting enzyme in synthesis of prostaglandins and other eicosanoids. Prior reports have shown that inhibition of cyclooxygenase-2 activity, either by selective inhibitors or by antisense oligonucleotide, results in suppression of growth of squamous cell carcinoma cell lines which express high cyclooxygenase-2 levels, such as NA, a cell line established from a squamous cell carcinoma of the tongue. To investigate the mechanisms by which cyclooxygenase-2 inhibitors suppressed growth of these cells, the effects of NS-398, the selective cyclooxygenase-2 inhibitor, on cell-cycle distribution were examined. NS-398 induced G0/G1 cell-cycle arrest in NA cells which expressed cyclooxygenase-2. G0/G1 arrest induced by NS-398 was accompanied by up-regulation of cyclin-dependent kinase inhibitor p21, but not by up-regulation of the other cyclin-dependent kinase inhibitors. Transfection with p21 antisense oligonucleotide inhibited cell-cycle arrest induced by NS-398. Accumulation in G0/G1 was also observed in NA cells transfected with cyclooxygenase-2 antisense oligonucleotide. On the other hand, NS-398-treated NA cells showed a loss of plasma membrane asymmetry, a marker of early events in apoptosis. However, NS-398 did not induce other morphological and biochemical changes related to apoptotic cell death. These results suggest that cyclooxygenase-2 inhibitor induces G0/G1 cell-cycle arrest in NA cells by up-regulation of p21. Our results also suggest that NS-398 is not sufficient to complete the whole process of apoptosis in NA cells, although it induces an early event in apoptosis
Cyclo-oxygenase inhibition reduces tumour growth and metastasis in an orthotopic model of breast cancer
The effect of selective and non-selective cyclo-oxygenase inhibition on tumour growth and metastasis in an orthotopic model of breast cancer was investigated. 4T1 mammary adenocarcinoma cells were injected into the mammary fat pad of female BALB/c mice. When tumours reached a mean tumour diameter of 8.4±0.4 mm, mice were randomised into three groups (n=6 per group) and received daily intraperitoneal injections of the selective cyclo-oxygenase-2 inhibitor, SC-236, the non selective cyclo-oxygenase inhibitor, Indomethacin, or drug vehicle. Tumour diameter was recorded on alternate days. From 8 days after initiation of treatment, tumour diameter in animals treated with either SC-236 or indomethacin was significantly reduced relative to controls. Both primary tumour weight and the number of lung metastases were significantly reduced in the SC-236 and indomethacin treated mice. Microvessel density was reduced and tumor cell apoptosis increased in the primary tumour of mice treated with either the selective or non-selective cyclo-oxygenase inhibitor. In vitro, cyclo-oxygenase inhibition decreased vascular endothelial growth factor production and increased apoptosis of tumour cells. Our results suggest that cyclo-oxygenase inhibitors will be of value in the treatment of both primary and metastatic breast cancer
Positive Feedback Regulation between Phospholipase D and Wnt Signaling Promotes Wnt-Driven Anchorage-Independent Growth of Colorectal Cancer Cells
Aberrant activation of the canonical Wnt/β-catenin pathway occurs in almost all colorectal cancers and contributes to their growth, invasion and survival. Phopholipase D (PLD) has been implicated in progression of colorectal carcinoma However, an understanding of the targets and regulation of this important pathway remains incomplete and besides, relationship between Wnt signaling and PLD is not known.Here, we demonstrate that PLD isozymes, PLD1 and PLD2 are direct targets and positive feedback regulators of the Wnt/β-catenin signaling. Wnt3a and Wnt mimetics significantly enhanced the expression of PLDs at a transcriptional level in HCT116 colorectal cancer cells, whereas silencing of β-catenin gene expression or utilization of a dominant negative form of T cell factor-4 (TCF-4) inhibited expression of PLDs. Moreover, both PLD1 and PLD2 were highly induced in colon, liver and stomach tissues of mice after injection of LiCl, a Wnt mimetic. Wnt3a stimulated formation of the β-catenin/TCF complexes to two functional TCF-4-binding elements within the PLD2 promoter as assessed by chromatin immunoprecipitation assay. Suppressing PLD using gene silencing or selective inhibitor blocked the ability of β-catenin to transcriptionally activate PLD and other Wnt target genes by preventing formation of the β-catenin/TCF-4 complex, whereas tactics to elevate intracellular levels of phosphatidic acid, the product of PLD activity, enhanced these effects. Here we show that PLD is necessary for Wnt3a-driven invasion and anchorage-independent growth of colon cancer cells.PLD isozyme acts as a novel transcriptional target and positive feedback regulator of Wnt signaling, and then promotes Wnt-driven anchorage-independent growth of colorectal cancer cells. We propose that therapeutic interventions targeting PLD may confer a clinical benefit in Wnt/β-catenin-driven malignancies
- …