43 research outputs found

    Genetic Analysis of HIV-1 Subtypes in Nairobi, Kenya

    Get PDF
    Background: Genetic analysis of a viral infection helps in following its spread in a given population, in tracking the routes of infection and, where applicable, in vaccine design. Additionally, sequence analysis of the viral genome provides information about patterns of genetic divergence that may have occurred during viral evolution. Objective: In this study we have analyzed the subtypes of Human Immunodeficiency Virus -1 (HIV-1) circulating in a diverse sample population of Nairobi, Kenya. Methodology: 69 blood samples were collected from a diverse subject population attending the Aga Khan University Hospital in Nairobi, Kenya. Total DNA was extracted from peripheral blood mononuclear cells (PBMCs), and used in a Polymerase Chain Reaction (PCR) to amplify the HIV gag gene. The PCR amplimers were partially sequenced, and alignment and phylogenetic analysis of these sequences was performed using the Los Alamos HIV Database. Results: Blood samples from 69 HIV-1 infected subjects from varying ethnic backgrounds were analyzed. Sequence alignment and phylogenetic analysis showed 39 isolates to be subtype A, 13 subtype D, 7 subtype C, 3 subtype AD and CRF01_AE, 2 subtype G and 1 subtype AC and 1 AG. Deeper phylogenetic analysis revealed HIV subtype A sequences to be highly divergent as compared to subtypes D and C. Conclusion: Our analysis indicates that HIV-1 subtypes in the Nairobi province of Kenya are dominated by a genetically diverse clade A. Additionally, the prevalence of highly divergent, complex subtypes, intersubtypes, and the recombinant forms indicates viral mixing in Kenyan population, possibly as a result of dual infections

    The growth inhibitory potential and antimetastatic effect of camel urine on breast cancer cells in vitro and in vivo

    Get PDF
    Although it may sound unpleasant, camel urine has been consumed extensively for years in the Middle East as it is believed to be able to treat a wide range of diseases such as fever, cold, or even cancer. People usually take it by mixing small drops with camel milk or take it directly. The project aims to study the effects of camel urine in inhibiting the growth potential and metastatic ability of 4T1 cancer cell line in vitro and in vivo. Based on the MTT result, the cytotoxicity of camel urine against 4T1 cell was established, and it was dose-dependent. Additionally, the antimetastatic potential of camel urine was tested by running several assays such as scratch assay, migration and invasion assay, and mouse aortic ring assay with promising results in the ability of camel urine to inhibit metastatic process of the 4T1 cells. In order to fully establish camel urine’s potential, an in vivo study was carried out by treating mice inoculated with 4T1 cells with 2 different doses of camel urine. By the end of the treatment period, the tumor in both treated groups had reduced in size as compared to the control group. Additional assays such as the TUNEL assay, immunophenotyping, cytokine level detection assay, clonogenic assay, and proteome profiler demonstrated the capability of camel urine to reduce and inhibit the metastatic potential of 4T1 cells in vivo. To sum up, further study of anticancer properties of camel urine is justified, as evidenced through the in vitro and in vivo studies carried out. Better results were obtained at higher concentration of camel urine used in vivo. Apart from that, this project has laid out the mechanisms employed by the substance to inhibit the growth and the metastatic process of the 4T1 cell

    Mitochondrial Mutations in Adenoid Cystic Carcinoma of the Salivary Glands

    Get PDF
    Background: The MitoChip v2.0 resequencing array is an array-based technique allowing for accurate and complete sequencing of the mitochondrial genome. No studies have investigated mitochondrial mutation in salivary gland adenoid cystic carcinomas. Methodology: The entire mitochondrial genome of 22 salivary gland adenoid cystic carcinomas (ACC) of salivary glands and matched leukocyte DNA was sequenced to determine the frequency and distribution of mitochondrial mutations in ACC tumors. Principal Findings: Seventeen of 22 ACCs (77%) carried mitochondrial mutations, ranging in number from 1 to 37 mutations. A disproportionate number of mutations occurred in the D-loop. Twelve of 17 tumors (70.6%) carried mutations resulting in amino acid changes of translated proteins. Nine of 17 tumors (52.9%) with a mutation carried an amino acid changing mutation in the nicotinamide adenine dinucleotide dehydrogenase (NADH) complex. Conclusions/Significance: Mitochondrial mutation is frequent in salivary ACCs. The high incidence of amino acid changing mutations implicates alterations in aerobic respiration in ACC carcinogenesis. D-loop mutations are of unclear significance

    Concurrent Proinflammatory and Apoptotic Activity of a Helicobacter pylori Protein (HP986) Points to Its Role in Chronic Persistence

    Get PDF
    Helicobacter pylori induces cytokine mediated changes in gastroduodenal pathophysiology, wherein, the activated macrophages at the sub-mucosal space play a central role in mounting innate immune response against the antigens. The bacterium gains niche through persistent inflammation and local immune-suppression causing peptic ulcer disease or chronic gastritis; the latter being a significant risk factor for the development of gastric adenocarcinoma. What favors persistence of H. pylori in the gastric niches is not clearly understood. We report detailed characterization of a functionally unknown gene (HP986), which was detected in patient isolates associated with peptic ulcer and gastric carcinoma. Expression and purification of recombinant HP986 (rHP986) revealed a novel, ∼29 kDa protein in biologically active form which associates with significant levels of humoral immune responses in diseased individuals (p<0.001). Also, it induced significant levels of TNF-α and Interleukin-8 in cultured human macrophages concurrent to the translocation of nuclear transcription factor-κB (NF-κB). Further, the rHP986 induced apoptosis of cultured macrophages through a Fas mediated pathway. Dissection of the underlying signaling mechanism revealed that rHP986 induces both TNFR1 and Fas expression to lead to apoptosis. We further demonstrated interaction of HP986 with TNFR1 through computational and experimental approaches. Independent proinflammatory and apoptotic responses triggered by rHP986 as shown in this study point to its role, possibly as a survival strategy to gain niche through inflammation and to counter the activated macrophages to avoid clearance

    Turning Lemons into Lemonade: Social Support as a Moderator of the Relationship Between Technostress and Quality of Life Among University Students

    No full text
    Khalid Mehmood,1 Aamir Suhail,2 Pradeep Kautish,3 Muhammad Mohsin Hakeem,4 Md Rashid5 1Research Center of Hubei Micro & Small Enterprises Development, School of Economics and Management, Hubei Engineering University, Xiaogan, People’s Republic of China; 2Department of Management and Leadership, Business School, Tecnologico de Monterrey, Guadalajara, Mexico; 3Department of Marketing, Institute of Management, Nirma University, Ahmedabad, India; 4NUCB Business School, Nagoya University of Commerce and Business, Nagoya, Japan; 5Department of Civil Engineering, Indian Institute of Technology, Kharagpur, IndiaCorrespondence: Md Rashid, Indian Institute of Technology, Kharagpur, India, Email [email protected] Pradeep Kautish, Institute of Management, Nirma University, Ahmedabad, India, Email [email protected]: The overuse of internet-based technologies as a means of coping with the stress they generate has resulted in an alarming level of addiction, adversely impacting the quality of life and overall health of younger individuals. This social detachment, in turn, contributes to both physical and mental health deterioration. The potential remedy for this predicament lies in the application of social support as an antidote to internet addiction. In this context, our present study employs the Stress-Strain-Outcome model to explore the indirect effects of internet addiction and the moderating role of social support in relation to the influence of technostress on the quality of life of adults.Methods: We adopted a time-lagged design to collect data from university graduates and evaluated our study hypotheses using Mplus.Results: Our empirical findings highlight the significant influence of technostress on internet addiction, with the latter significantly mediating the relationship between technostress and quality of life. Furthermore, our results reveal that social support effectively moderates the indirect effects of technostress on quality of life through its impact on internet addiction.Conclusion: These findings can help researchers and educators better understand the underlying mechanisms between technostress and quality of life with social support as the silver lining. This form of social support holds the potential not only to alleviate internet addiction but also to positively enhance the quality of life and overall wellbeing of individuals facing these challenges. The implications of these findings and avenues for future research are also discussed.Keywords: internet addiction, quality of life, social support, technostress, social media, moderation-mediatio

    Molecular and systems approaches towards drought-tolerant canola crops

    No full text
    Modern agriculture is facing multiple challenges including the necessity for a substantial increase in production to meet the needs of a burgeoning human population. Water shortage is a deleterious consequence of both population growth and climate change and is one of the most severe factors limiting global crop productivity. Brassica species, particularly canola varieties, are cultivated worldwide for edible oil, animal feed, and biodiesel, and suffer dramatic yield loss upon drought stress. The recent release of the Brassica napus genome supplies essential genetic information to facilitate identification of drought-related genes and provides new information for agricultural improvement in this species. Here we summarize current knowledge regarding drought responses of canola, including physiological and -omics effects of drought. We further discuss knowledge gained through translational biology based on discoveries in the closely related reference species Arabidopsis thaliana and through genetic strategies such as genome-wide association studies and analysis of natural variation. Knowledge of drought tolerance/resistance responses in canola together with research outcomes arising from new technologies and methodologies will inform novel strategies for improvement of drought tolerance and yield in this and other important crop species. (c)2016 The Authors, (c)2016 New Phytologist Trust111

    Molecular and systems approaches towards drought-tolerant canola crops

    No full text
    Modern agriculture is facing multiple challenges including the necessity for a substantial increase in production to meet the needs of a burgeoning human population. Water shortage is a deleterious consequence of both population growth and climate change and is one of the most severe factors limiting global crop productivity. Brassica species, particularly canola varieties, are cultivated worldwide for edible oil, animal feed, and biodiesel, and suffer dramatic yield loss upon drought stress. The recent release of the Brassica napus genome supplies essential genetic information to facilitate identification of drought-related genes and provides new information for agricultural improvement in this species. Here we summarize current knowledge regarding drought responses of canola, including physiological and -omics effects of drought. We further discuss knowledge gained through translational biology based on discoveries in the closely related reference species Arabidopsis thaliana and through genetic strategies such as genome-wide association studies and analysis of natural variation. Knowledge of drought tolerance/resistance responses in canola together with research outcomes arising from new technologies and methodologies will inform novel strategies for improvement of drought tolerance and yield in this and other important crop species. © 2016 New Phytologist Trust.

    Gonadotropins and prostate cancer: revisited.

    No full text
    Luteinizing hormone and follicle-stimulating hormone are called gonadotropins, because they stimulate the gonads – in males the testes and in females the ovaries. They are not necessary for life, but are essential for reproduction. In addition, the association of these hormones with prostate cancer has been the interest of many researchers. Their detection in the human prostate has been investigated using different methods, including immunologic and RT-PCR techniques. In addition, the increasing evidence of paracrine/autocrine functions of the gonadotropic glycoprotein hormones, their allocation to the superfamily of cystine knot growth factors, and luteinizing hormone/chorionic gonadotropin receptor gene expression in non-gonadal tissues led many researchers to investigate intraprostatic glycoprotein hormones and their receptor gene expression. We aim in this review to shed light on the physiology of the gonadotropins and their association with prostate cancer and highlight the future possibilities of their use as targets in treating this disease
    corecore