2,149 research outputs found
Analysis of the Changes in the Oxidation of Brain Tissue Cytochrome-c-Oxidase in Traumatic Brain Injury Patients during Hypercapnoea A Broadband NIRS Study
Using broadband near-infrared spectroscopy (NIRS) and cerebral micro-dialysis (MD), we investigated cerebral cellular metabolism and mitochondrial redox states, following hypercapnoea in 6 patients with traumatic brain injury (TBI). In all patients hypercapnoea increased intracranial pressure and cerebral blood flow velocity measured with transcranial Doppler. Despite the likely increase in cerebral oxygen delivery, we did not see an increase in the oxidation status of cytochrome-c-oxidase [oxCCO] in every patient. Analysis of the NIRS data demonstrated two patterns of the changes; Group A (n = 4) showed an increase in [oxCCO] of 0.34(+/-0.34)mu M and Group B (n = 2) a decrease of 0.40(+/- 0.41)mu M. Although no obvious association was seen between the Delta[oxCCO] and the MD, measured changes in lactate and pyruvate concentrations. Further work using model informed data interpretation may be helpful in understanding the multimodal signals acquired in this heterogeneous patient group
Polymeric templating synthesis of anatase TiOâ‚‚ nanoparticles from low-cost inorganic titanium sources
A novel facile and cost-effective synthesis method for anatase TiOâ‚‚ nanoparticles has been developed by using poly-acrylic acid hydrogel as template at room temperature. The newly developed synthesis method avoids the use of hazardous reagents and/or hydrothermal steps, and enables production of highly active TiOâ‚‚ nanoparticles from low cost inorganic titanium sources. The synthesized TiOâ‚‚ nanoparticles have been studied in several applications including dye-sensitized solar cells as a photoanode as well as in organics degradation of methyl orange in aqueous media. Good photocatalytic performances were obtained in both applications
Recommended from our members
Left ventricular lead misplacement discovered a decade after cardiac resynchronization therapy-defibrillator implantation: a case report.
Introduction: Satisfactory left ventricular (LV) lead placement into the coronary sinus (CS) can be achieved in the majority of patients but there are still instances of acute failure most often due to anatomical differences, for example due to tortuous CS anatomy. Chronic LV lead misplacement and its delayed discovery is not a common scenario. It is unclear if chronic dual right ventricular pacing can hasten the progression of heart failure. Case presentation: A 73-year-old lady presented to our cardiac centre with severe heart failure. She had non-ischaemic dilated cardiomyopathy with underlying left bundle branch block and a cardiac resynchronization therapy-defibrillator device in situ for the past decade. She also had a chronic pericardial effusion of unknown aetiology. Whilst the patient was being treated for acute heart failure, it was noted on patient telemetry that the QRS morphology for supposed bi-ventricular pacing was unusual. This led to a lateral chest radiograph and a CS venogram to be performed, both of which confirmed that the LV lead was in fact not in the CS. Plans were made to place a new LV lead but unfortunately the patient continued to clinically deteriorate despite maximal treatment and died before this could be performed. Discussion: It is only with thorough review of the electrocardiographic data and chest radiography that led to the discovery of chronic LV lead misplacement. This case illustrates the importance of expert review of radiographic imaging and electrocardiographic data in patients with implanted cardiac devices
Thyroid hormone affects both endothelial and vascular smooth muscle cells in rat arteries
Hypothyroidism impairs endothelium-dependent dilatations, while hyperthyroidism augments the production of endothelial nitric oxide. Thus, experiments were designed to determine if thyroid hormone causes endothelium-dependent responses, or alleviates diabetic endothelial dysfunction. Isometric tension was measured in rings with or without endothelium of arteries from normal and diabetic Sprague-Dawley rats. Release of 6-keto prostaglandin F1α and thromboxane B2 were measured by enzyme linked immunosorbent assay and protein levels [endothelial nitric oxide synthase (eNOS), cyclooxygenases (COX)] by immunoblotting. Triiodothyronine (T3) caused concentration-dependent (3×10−6–3×10−5 M) relaxations in mesenteric (pEC50, 4.96±0.19) and femoral (pEC50, 4.57±0.35) arteries without endothelium. In femoral arteries of rats with diabetes, 5-methylamino-2-[[(2S,3R,5R,8S,9S)-3,5,9-trimethyl-2-(1-oxo-(1H-pyrrol-2- -yl)propan-2-yl)-1,7-dioxaspiro-(5,5)undecan-8-yl]methyl]benzooxazole-4-carboxylic acid (A23187, 3×10−7 to 10−6 M) caused partly endothelium-dependent contractions. After chronic T3-treatment with (10 μg/kg/day; four weeks), the contractions to A23187 of preparations with and without endothelium were comparable, the thromboxane B2-release was reduced (by 38.1±9.2%). The pEC50 of 9, 11-dideoxy-11α, 9α-epoxymethanoprostaglandin F2α (U46619, TP-receptor agonist) was increased in T3-treated diabetic rats compared with controls (8.53±0.06 vs 7.94±0.09). The protein expression of eNOS increased (by 228%) but that of COX-1 decreased (by 35%) after chronic T3 treatment. In human umbilical vein endothelial cells incubated for one week with T3 (10−10–10−7 M) in the presence but not in the absence of interleukin-1β (1 ng/ml), the expression of eNOS was increased compared to control. In conclusion, thyroid hormone acutely relaxes mesenteric and femoral vascular smooth muscle, but given chronically reduces the release of endothelium-derived vasoconstrictor prostanoids while enhancing the responsiveness of TP receptors of vascular smooth muscle.postprin
Recommended from our members
Finding the heart of the problem: A letter to the editor on 'Detection of oesophageal course during left atrial ablation' by Santoro et al.
Recommended from our members
Letter to the editor: oesophageal cooling for protection during left atrial ablations.
Engineering Crystal Packing in RNA-Protein Complexes II: A Historical Perspective from the Structural Studies of the Spliceosome
Cryo-electron microscopy has greatly advanced our understanding of how the spliceosome cycles through different conformational states to conduct the chemical reactions that remove introns from pre-mRNA transcripts. The Cryo-EM structures were built upon decades of crystallographic studies of various spliceosomal RNA-protein complexes. In this review we give an overview of the crystal structures solved in the Nagai group, utilizing many of the strategies to design crystal packing as described in the accompanying paper
Recommended from our members
Cooling or Warming the Esophagus to Reduce Esophageal Injury During Left Atrial Ablation in the Treatment of Atrial Fibrillation.
Ablation of the left atrium using either radiofrequency (RF) or cryothermal energy is an effective treatment for atrial fibrillation (AF) and is the most frequent type of cardiac ablation procedure performed. Although generally safe, collateral injury to surrounding structures, particularly the esophagus, remains a concern. Cooling or warming the esophagus to counteract the heat from RF ablation, or the cold from cryoablation, is a method that is used to reduce thermal esophageal injury, and there are increasing data to support this approach. This protocol describes the use of a commercially available esophageal temperature management device to cool or warm the esophagus to reduce esophageal injury during left atrial ablation. The temperature management device is powered by standard water-blanket heat exchangers, and is shaped like a standard orogastric tube placed for gastric suctioning and decompression. Water circulates through the device in a closed-loop circuit, transferring heat across the silicone walls of the device, through the esophageal wall. Placement of the device is analogous to the placement of a typical orogastric tube, and temperature is adjusted via the external heat-exchanger console
- …