19 research outputs found
Increasing the simulation performance of large-scale evacuations using parallel computing techniques based on domain decomposition
Evacuation simulation has the potential to be used as part of a decision support system during large-scale incidents to provide advice to incident commanders. To be viable in these applications, it is essential that the simulation can run many times faster than real time. Parallel processing is a method of reducing run times for very large computational simulations by distributing the workload amongst a number of processors. This paper presents the development of a parallel version of the rule based evacuation simulation software buildingEXODUS using domain decomposition. Four Case Studies (CS) were tested using a cluster, consisting of 10 Intel Core 2 Duo (dual core) 3.16 GHz CPUs. CS-1 involved an idealised large geometry, with 20 exits, intended to illustrate the peak computational speed up performance of the parallel implementation, the population consisted of 100,000 agents; the peak computational speedup (PCS) was 14.6 and the peak real-time speedup (PRTS) was 4.0. CS-2 was a long area with a single exit area with a population of 100,000 agents; the PCS was 13.2 and the PRTS was 17.2. CS-3 was a 50 storey high rise building with a population of 8000/16,000 agents; the PCS was 2.48/4.49 and the PRTS was 17.9/12.9. CS-4 is a large realistic urban area with 60,000/120,000 agents; the PCS was 5.3/6.89 and the PRTS was 5.31/3.0. This type of computational performance opens evacuation simulation to a range of new innovative application areas such as real-time incident support, dynamic signage in smart buildings and virtual training environments
Spinal afferent neurons projecting to the rat lung and pleura express acid sensitive channels
BACKGROUND: The acid sensitive ion channels TRPV1 (transient receptor potential vanilloid receptor-1) and ASIC3 (acid sensing ion channel-3) respond to tissue acidification in the range that occurs during painful conditions such as inflammation and ischemia. Here, we investigated to which extent they are expressed by rat dorsal root ganglion neurons projecting to lung and pleura, respectively. METHODS: The tracer DiI was either injected into the left lung or applied to the costal pleura. Retrogradely labelled dorsal root ganglion neurons were subjected to triple-labelling immunohistochemistry using antisera against TRPV1, ASIC3 and neurofilament 68 (marker for myelinated neurons), and their soma diameter was measured. RESULTS: Whereas 22% of pulmonary spinal afferents contained neither channel-immunoreactivity, at least one is expressed by 97% of pleural afferents. TRPV1(+)/ASIC3(- )neurons with probably slow conduction velocity (small soma, neurofilament 68-negative) were significantly more frequent among pleural (35%) than pulmonary afferents (20%). TRPV1(+)/ASIC3(+ )neurons amounted to 14 and 10% respectively. TRPV1(-)/ASIC3(+ )neurons made up between 44% (lung) and 48% (pleura) of neurons, and half of them presumably conducted in the A-fibre range (larger soma, neurofilament 68-positive). CONCLUSION: Rat pleural and pulmonary spinal afferents express at least two different acid-sensitive channels that make them suitable to monitor tissue acidification. Patterns of co-expression and structural markers define neuronal subgroups that can be inferred to subserve different functions and may initiate specific reflex responses. The higher prevalence of TRPV1(+)/ASIC3(- )neurons among pleural afferents probably reflects the high sensitivity of the parietal pleura to painful stimuli
Endothelin-1 as a neuropeptide: neurotransmitter or neurovascular effects?
Endothelin-1 (ET-1) is an endothelium-derived peptide that also possesses potent mitogenic activity. There is also a suggestion the ET-1 is a neuropeptide, based mainly on its histological identification in both the central and peripheral nervous system in a number of species, including man. A neuropeptide role for ET-1 is supported by studies showing a variety of effects caused following its administration into different regions of the brain and by application to peripheral nerves. In addition there are studies proposing that ET-1 is implicated in a number of neural circuits where its transmitter affects range from a role in pain and temperature control to its action on the hypothalamo-neurosecretory system. While the effect of ET-1 on nerve tissue is beyond doubt, its action on nerve blood flow is often ignored. Here, we review data generated in a number of species and using a variety of experimental models. Studies range from those showing the distribution of ET-1 and its receptors in nerve tissue to those describing numerous neurally-mediated effects of ET-1
Conditional median as a robust solution concept for uncapacitated location problems
Location, Multiple criteria, Efficiency, Robustness, Conditional median, 90B80, 90C31, 90C47,
Existence of pure Nash equilibria in discontinuous and non quasiconcave games
Nash equilibrium, Discontinuity, Quasiconcavity,
Convergence Speed of an Integral Method for Computing the Essential Supremum
. We give an equivalence between the tasks of computing the essential supremum of a summable function and of finding a certain zero of a one-dimensional convex function. Interpreting the integral method as Newton-type method we show that in the case of objective functions with an essential supremum that is not spread the algorithm can work very slowly. For this reason we propose a method of accelerating the algorithm which is in some respect similar to the method of Aitken/Steffensen. Key words: essential supremum, convergence speed, integral global optimization, Newton algorithm 1. Introduction The problem of determining the essential supremum of a summable function f over its domain D ae IR n can be regarded as a generalization of the task of global optimization. If the maximum of f over D does not exist, since D is not closed or f is not upper semicontinuous, the supremum can be determined instead of the maximum. If f is not completely defined for each point, as in Lebesgue sp..