30 research outputs found

    Increased Risk of Fragility Fractures among HIV Infected Compared to Uninfected Male Veterans

    Get PDF
    BACKGROUND: HIV infection has been associated with an increased risk of fragility fracture. We explored whether or not this increased risk persisted in HIV infected and uninfected men when controlling for traditional fragility fracture risk factors. METHODOLOGY/PRINCIPAL FINDINGS: Cox regression models were used to assess the association of HIV infection with the risk for incident hip, vertebral, or upper arm fracture in male Veterans enrolled in the Veterans Aging Cohort Study Virtual Cohort (VACS-VC). We calculated adjusted hazard ratios comparing HIV status and controlling for demographics and other established risk factors. The sample consisted of 119,318 men, 33% of whom were HIV infected (34% aged 50 years or older at baseline, and 55% black or Hispanic). Median body mass index (BMI) was lower in HIV infected compared with uninfected men (25 vs. 28 kg/m²; p<0.0001). Unadjusted risk for fracture was higher among HIV infected compared with uninfected men [HR: 1.32 (95% CI: 1.20, 1.47)]. After adjusting for demographics, comorbid disease, smoking and alcohol abuse, HIV infection remained associated with an increased fracture risk [HR: 1.24 (95% CI: 1.11, 1.39)]. However, adjusting for BMI attenuated this association [HR: 1.10 (95% CI: 0.97, 1.25)]. The only HIV-specific factor associated with fragility fracture was current protease inhibitor use [HR: 1.41 (95% CI: 1.16, 1.70)]. CONCLUSIONS/SIGNIFICANCE: HIV infection is associated with fragility fracture risk. This risk is attenuated by BMI

    Management of osteoporosis in patients hospitalized for hip fractures

    Get PDF
    Hip fracture is associated with high morbidity, mortality, and economic burden worldwide. It is also a major risk factor for a subsequent fracture. A literature search on the management of osteoporosis in patients with hip fracture was performed on the Medline database. Only one clinical drug trial was conducted in patients with a recent hip fracture. Further studies that specifically address post-fracture management of hip fracture are needed. The efficacy of anti-osteoporosis medication in older individuals and those at high risk of fall is reviewed in this paper. Adequate nutrition is vital for bone health and to prevent falls, especially in malnourished patients. Protein, calcium, and vitamin D supplementation is associated with increased hip BMD and a reduction in falls. Fall prevention, exercise, and balance training incorporated in a comprehensive rehabilitation program are essential to improve functional disability and survival. Exclusion of secondary causes of osteoporosis and treatment of coexistent medical conditions are also vital. Such a multidisciplinary team approach to the management of hip fracture patients is associated with a better clinical outcome. Although hip fracture is the most serious of all fractures, osteoporosis management should be prioritized to prevent deterioration of health and occurrence of further fracture

    Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives

    Get PDF
    This paper discusses the fundamentals, applications, potential, limitations, and future perspectives of polarized light reflection techniques for the characterization of materials and related systems and devices at the nanoscale. These techniques include spectroscopic ellipsometry, polarimetry, and reflectance anisotropy. We give an overview of the various ellipsometry strategies for the measurement and analysis of nanometric films, metal nanoparticles and nanowires, semiconductor nanocrystals, and submicron periodic structures. We show that ellipsometry is capable of more than the determination of thickness and optical properties, and it can be exploited to gain information about process control, geometry factors, anisotropy, defects, and quantum confinement effects of nanostructures

    Study of anisotropic optical properties of poly(arylenephenylene) thin films: Dependence on polymer backbone

    No full text
    The correlation between the optical properties and microstructural parameters of different poly(arylenephenylene) thin films, deposited by spin-coating, is investigated by spectroscopic ellipsometry. Conjugated polymer films are found to be anisotropic. They are birefringent, with a higher refractive index in the plane of the film than perpendicular to it. This anisotropy is due to a preferential in-plane orientation of the polymer chains. The dependence of both the in-plane and out-of-plane optical constants of the polymeric thin films and of the fundamental pi-pi* transition on the structure of the chain backbone are studied. The change of the pi-pi* transition energy of the polymers from solution to thin film and its correlation with the molecular structure are investigated as indicative of interchain interactions

    Spectroscopic ellipsometry for characterization of organic semiconductor polymeric thin films

    No full text
    The correlation between the optical properties and microstructural parameters of organic semiconductor polymeric thin films is investigated by spectroscopic ellipsometry. Different poly(arylenephenylene)-based films have been deposited by spincoating. The effect of deposition conditions on the microstructure and, hence, optical constants of the polymeric thin films and the dependence of the optical properties and pi-pi* transition on the structure of the chain backbone are studied. (C) 2003 Elsevier Science B.V. All rights reserved

    Insight into gold nanoparticle-hydrogen interaction: A way to tailor nanoparticle surface charge and self-assembled monolayer chemisorption

    No full text
    The interaction of hydrogen with gold nanoparticles (Au NPs) and gold thin films also functionalized with thiols is investigated. Au NPs deposited on silicon substrates by radio frequency sputtering of a gold target and gold thin films have been exposed to a remote H(2) plasma and subsequently functionalized by the aromatic (4-methoxyterphenyl-3 '',S ''-dimethanethiol) and aliphatic (dodecanethiol) thiols. The impact of hydrogenation on changes of the charge on gold surfaces and nanoparticles, on the kinetics of the thiol self-assembled monolayer (SAM) formation, and on the density of the resulting SAMs has been investigated combining spectroscopic ellipsometry (SE), Raman spectroscopy, and surface potential Kelvin probe microscopy (SP-KPM) in conjunction with noncontact atomic force microscopy (AFM). We found that remote H(2) plasma pretreatments of gold surfaces are effective in improving thiolate adsorption, making SAMs more uniform and densely packed. We also demonstrate that hydrogenation of nanoparticles improves stability of thiol functionalized Au NPs, avoiding their aggregation. Additionally, we demonstrate that a remote H(2) plasma processing is also effective in the selective removal of the carbon chain and of sulfur atoms from gold surfaces, therefore allowing tailoring of their optical and chemical properties

    Insight into gold nanoparticle-hydrogen interaction: A way to tailor nanoparticle surface charge and self-assembled monolayer chemisorption

    No full text
    The interaction of hydrogen with gold nanoparticles (Au NPs) and gold thin films also functionalized with thiols is investigated. Au NPs deposited on silicon substrates by radio frequency sputtering of a gold target and gold thin films have been exposed to a remote H(2) plasma and subsequently functionalized by the aromatic (4-methoxyterphenyl-3 '',S ''-dimethanethiol) and aliphatic (dodecanethiol) thiols. The impact of hydrogenation on changes of the charge on gold surfaces and nanoparticles, on the kinetics of the thiol self-assembled monolayer (SAM) formation, and on the density of the resulting SAMs has been investigated combining spectroscopic ellipsometry (SE), Raman spectroscopy, and surface potential Kelvin probe microscopy (SP-KPM) in conjunction with noncontact atomic force microscopy (AFM). We found that remote H(2) plasma pretreatments of gold surfaces are effective in improving thiolate adsorption, making SAMs more uniform and densely packed. We also demonstrate that hydrogenation of nanoparticles improves stability of thiol functionalized Au NPs, avoiding their aggregation. Additionally, we demonstrate that a remote H(2) plasma processing is also effective in the selective removal of the carbon chain and of sulfur atoms from gold surfaces, therefore allowing tailoring of their optical and chemical properties
    corecore