320 research outputs found

    The Sydney Triage to Admission Risk Tool (START) to predict Emergency Department Disposition: A derivation and internal validation study using retrospective state-wide data from New South Wales, Australia.

    Full text link
    BACKGROUND: Disposition decisions are critical to the functioning of Emergency Departments. The objectives of the present study were to derive and internally validate a prediction model for inpatient admission from the Emergency Department to assist with triage, patient flow and clinical decision making. METHODS: This was a retrospective analysis of State-wide Emergency Department data in New South Wales, Australia. Adult patients (age ≥ 16 years) were included if they presented to a Level five or six (tertiary level) Emergency Department in New South Wales, Australia between 2013 and 2014. The outcome of interest was in-patient admission from the Emergency Department. This included all admissions to short stay and medical assessment units and being transferred out to another hospital. Analyses were performed using logistic regression. Discrimination was assessed using area under curve and derived risk scores were plotted to assess calibration. RESULTS: 1,721,294 presentations from twenty three Level five or six hospitals were analysed. Of these 49.38% were male and the mean (sd) age was 49.85 years (22.13). Level 6 hospitals accounted for 47.70% of cases and 40.74% of cases were classified as an in-patient admission based on their mode of separation. The final multivariable model including age, arrival by ambulance, triage category, previous admission and presenting problem had an AUC of 0.82 (95% CI 0.81, 0.82). CONCLUSION: By deriving and internally validating a risk score model to predict the need for in-patient admission based on basic demographic and triage characteristics, patient flow in ED, clinical decision making and overall quality of care may be improved. Further studies are now required to establish clinical effectiveness of this risk score model

    The fate of acetic acid during glucose co-metabolism by the spoilage yeast Zygosaccharomyces bailii

    Get PDF
    Zygosaccharomyces bailii is one of the most widely represented spoilage yeast species, being able to metabolise acetic acid in the presence of glucose. To clarify whether simultaneous utilisation of the two substrates affects growth efficiency, we examined growth in single- and mixed-substrate cultures with glucose and acetic acid. Our findings indicate that the biomass yield in the first phase of growth is the result of the weighted sum of the respective biomass yields on single-substrate medium, supporting the conclusion that biomass yield on each substrate is not affected by the presence of the other at pH 3.0 and 5.0, at least for the substrate concentrations examined. In vivo(13)C-NMR spectroscopy studies showed that the gluconeogenic pathway is not operational and that [2-(13)C]acetate is metabolised via the Krebs cycle leading to the production of glutamate labelled on C(2), C(3) and C(4). The incorporation of [U-(14)C]acetate in the cellular constituents resulted mainly in the labelling of the protein and lipid pools 51.5% and 31.5%, respectively. Overall, our data establish that glucose is metabolised primarily through the glycolytic pathway, and acetic acid is used as an additional source of acetyl-CoA both for lipid synthesis and the Krebs cycle. This study provides useful clues for the design of new strategies aimed at overcoming yeast spoilage in acidic, sugar-containing food environments. Moreover, the elucidation of the molecular basis underlying the resistance phenotype of Z. bailii to acetic acid will have a potential impact on the improvement of the performance of S. cerevisiae industrial strains often exposed to acetic acid stress conditions, such as in wine and bioethanol production.This work was supported by Fundacao para a Ciencia e Tecnologia (FCT), Portugal Grant PTDC/AGR-ALI/102608/2008 and by project FCOMP-01-0124-FEDER- 007047 and by FEDER through POFC - COMPETE and national funds from FCT - project PEst-C/BIA/UI4050/2011. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Multifunctional semi-interpenetrating polymer network-nanoencapsulated cathode materials for high-performance lithium-ion batteries

    Get PDF
    As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries.open

    The shear viscosity of carbon fibre suspension and its application for fibre length measurement

    Get PDF
    The viscosity of short carbon fibre suspensions in glycerol aqueous solution was measured using a bespoke vane-in-cup viscometer, where the carbon fibre has an aspect ratio from 450 to 2209. In the semi-concentrated regime, nL3 ranging from 20 to 4400, the suspensions demonstrated strong shear-thinning characteristics particularly at higher concentrations. The shear-thinning characteristic is strongly related to the crowding factor proposed by Kerekes, indicating that non-hydrodynamic interactions occur in the suspensions. The influence of fibre bending on viscosity emerges when the bending ratio is lower than 0.0028. An empirical model based on transient network formation and rupture was proposed and used to correlate the relative viscosity with fibre concentration nL3 and shear rate. Based on the model, a viscosity method is established to analyse the fibre length by measuring the viscosity of the fibre suspension using a bespoke vane-in-cup viscometer

    High sensitive troponin T and heart fatty acid binding protein: Novel biomarker in heart failure with normal ejection fraction?: A cross-sectional study

    Get PDF
    Background: High sensitive troponin T (hsTnT) and heart fatty acid binding protein (hFABP) are both markers of myocardial injury and predict adverse outcome in patients with systolic heart failure (SHF). We tested whether hsTnT and hFABP plasma levels are elevated in patients with heart failure with normal ejection fraction (HFnEF). Methods: We analyzed hsTnT, hFABP and N-terminal brain natriuretic peptide in 130 patients comprising 49 HFnEF patients, 51 patients with asymptomatic left ventricular diastolic dysfunction (LVDD), and 30 controls with normal diastolic function. Patients were classified to have HFnEF when the diagnostic criteria as recommended by the European Society of Cardiology were met. Results: Levels of hs TnT and hFABP were significantly higher in patients with asymptomatic LVDD and HFnEF (both p < 0.001) compared to controls. The hsTnT levels were 5.6 [0.0-9.8] pg/ml in LVDD vs. 8.5 [3.9-17.5] pg/ml in HFnEF vs. < 0.03 [< 0.03-6.4] pg/ml in controls; hFABP levels were 3029 [2533-3761] pg/ml in LVDD vs. 3669 [2918-4839] pg/ml in HFnEF vs. 2361 [1860-3081] pg/ml in controls. Furthermore, hsTnT and hFABP levels were higher in subjects with HFnEF compared to LVDD (p = 0.015 and p = 0.022). Conclusion: In HFnEF patients, hsTnT and hFABP are elevated independent of coronary artery disease, suggesting that ongoing myocardial damage plays a critical role in the pathophysiology. A combination of biomarkers and echocardiographic parameters might improve diagnostic accuracy and risk stratification of patients with HFnEF

    False positive circumsporozoite protein ELISA: a challenge for the estimation of the entomological inoculation rate of malaria and for vector incrimination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The entomological inoculation rate (EIR) is an important indicator in estimating malaria transmission and the impact of vector control. To assess the EIR, the enzyme-linked immunosorbent assay (ELISA) to detect the circumsporozoite protein (CSP) is increasingly used. However, several studies have reported false positive results in this ELISA. The false positive results could lead to an overestimation of the EIR. The aim of present study was to estimate the level of false positivity among different anopheline species in Cambodia and Vietnam and to check for the presence of other parasites that might interact with the anti-CSP monoclonal antibodies.</p> <p>Methods</p> <p>Mosquitoes collected in Cambodia and Vietnam were identified and tested for the presence of sporozoites in head and thorax by using CSP-ELISA. ELISA positive samples were confirmed by a <it>Plasmodium </it>specific PCR. False positive mosquitoes were checked by PCR for the presence of parasites belonging to the Haemosporidia, Trypanosomatidae, Piroplasmida, and Haemogregarines. The heat-stability and the presence of the cross-reacting antigen in the abdomen of the mosquitoes were also checked.</p> <p>Results</p> <p>Specimens (N = 16,160) of seven anopheline species were tested by CSP-ELISA for <it>Plasmodium falciparum </it>and <it>Plasmodium vivax </it>(Pv210 and Pv247). Two new vector species were identified for the region: <it>Anopheles pampanai </it>(<it>P. vivax</it>) and <it>Anopheles barbirostris </it>(<it>Plasmodium malariae</it>). In 88% (155/176) of the mosquitoes found positive with the <it>P. falciparum </it>CSP-ELISA, the presence of <it>Plasmodium </it>sporozoites could not be confirmed by PCR. This percentage was much lower (28% or 5/18) for <it>P. vivax </it>CSP-ELISAs. False positive CSP-ELISA results were associated with zoophilic mosquito species. None of the targeted parasites could be detected in these CSP-ELISA false positive mosquitoes. The ELISA reacting antigen of <it>P. falciparum </it>was heat-stable in CSP-ELISA true positive specimens, but not in the false positives. The heat-unstable cross-reacting antigen is mainly present in head and thorax and almost absent in the abdomens (4 out of 147) of the false positive specimens.</p> <p>Conclusion</p> <p>The CSP-ELISA can considerably overestimate the EIR, particularly for <it>P. falciparum </it>and for zoophilic species. The heat-unstable cross-reacting antigen in false positives remains unknown. Therefore it is highly recommended to confirm all positive CSP-ELISA results, either by re-analysing the heated ELISA lysate (100°C, 10 min), or by performing <it>Plasmodium </it>specific PCR followed if possible by sequencing of the amplicons for <it>Plasmodium </it>species determination.</p

    A Novel Strategy to Construct Yeast Saccharomyces cerevisiae Strains for Very High Gravity Fermentation

    Get PDF
    Very high gravity (VHG) fermentation is aimed to considerably increase both the fermentation rate and the ethanol concentration, thereby reducing capital costs and the risk of bacterial contamination. This process results in critical issues, such as adverse stress factors (ie., osmotic pressure and ethanol inhibition) and high concentrations of metabolic byproducts which are difficult to overcome by a single breeding method. In the present paper, a novel strategy that combines metabolic engineering and genome shuffling to circumvent these limitations and improve the bioethanol production performance of Saccharomyces cerevisiae strains under VHG conditions was developed. First, in strain Z5, which performed better than other widely used industrial strains, the gene GPD2 encoding glycerol 3-phosphate dehydrogenase was deleted, resulting in a mutant (Z5ΔGPD2) with a lower glycerol yield and poor ethanol productivity. Second, strain Z5ΔGPD2 was subjected to three rounds of genome shuffling to improve its VHG fermentation performance, and the best performing strain SZ3-1 was obtained. Results showed that strain SZ3-1 not only produced less glycerol, but also increased the ethanol yield by up to 8% compared with the parent strain Z5. Further analysis suggested that the improved ethanol yield in strain SZ3-1 was mainly contributed by the enhanced ethanol tolerance of the strain. The differences in ethanol tolerance between strains Z5 and SZ3-1 were closely associated with the cell membrane fatty acid compositions and intracellular trehalose concentrations. Finally, genome rearrangements in the optimized strain were confirmed by karyotype analysis. Hence, a combination of genome shuffling and metabolic engineering is an efficient approach for the rapid improvement of yeast strains for desirable industrial phenotypes

    HIV-1 Efficient Entry in Inner Foreskin Is Mediated by Elevated CCL5/RANTES that Recruits T Cells and Fuels Conjugate Formation with Langerhans Cells

    Get PDF
    Male circumcision reduces acquisition of HIV-1 by 60%. Hence, the foreskin is an HIV-1 entry portal during sexual transmission. We recently reported that efficient HIV-1 transmission occurs following 1 h of polarized exposure of the inner, but not outer, foreskin to HIV-1-infected cells, but not to cell-free virus. At this early time point, Langerhans cells (LCs) and T-cells within the inner foreskin epidermis are the first cells targeted by the virus. To gain in-depth insight into the molecular mechanisms governing inner foreskin HIV-1 entry, foreskin explants were inoculated with HIV-1-infeceted cells for 4 h. The chemokine/cytokine milieu secreted by the foreskin tissue, and resulting modifications in density and spatial distribution of T-cells and LCs, were then investigated. Our studies show that in the inner foreskin, inoculation with HIV-1-infected cells induces increased CCL5/RANTES (1.63-fold) and decreased CCL20/MIP-3-alpha (0.62-fold) secretion. Elevated CCL5/RANTES mediates recruitment of T-cells from the dermis into the epidermis, which is blocked by a neutralizing CCL5/RANTES Ab. In parallel, HIV-1-infected cells mediate a bi-phasic modification in the spatial distribution of epidermal LCs: attraction to the apical surface at 1 h, followed by migration back towards the basement membrane later on at 4 h, in correlation with reduced CCL20/MIP-3-alpha at this time point. T-cell recruitment fuels the continuous formation of LC-T-cell conjugates, permitting the transfer of HIV-1 captured by LCs. Together, these results reveal that HIV-1 induces a dynamic process of immune cells relocation in the inner foreskin that is associated with specific chemokines secretion, which favors efficient HIV-1 entry at this site
    corecore