11 research outputs found

    Requirement of argininosuccinate lyase for systemic nitric oxide production

    Get PDF
    Nitric oxide (NO) is crucial in diverse physiological and pathological processes. We show that a hypomorphic mouse model of argininosuccinate lyase (encoded by Asl) deficiency has a distinct phenotype of multiorgan dysfunction and NO deficiency. Loss of Asl in both humans and mice leads to reduced NO synthesis, owing to both decreased endogenous arginine synthesis and an impaired ability to use extracellular arginine for NO production. Administration of nitrite, which can be converted into NO in vivo, rescued the manifestations of NO deficiency in hypomorphic Asl mice, and a nitric oxide synthase (NOS)-independent NO donor restored NO-dependent vascular reactivity in humans with ASL deficiency. Mechanistic studies showed that ASL has a structural function in addition to its catalytic activity, by which it contributes to the formation of a multiprotein complex required for NO production. Our data demonstrate a previously unappreciated role for ASL in NOS function and NO homeostasis. Hence, ASL may serve as a target for manipulating NO production in experimental models, as well as for the treatment of NO-related diseases

    Role of Oxidative Stress in Various Stages of Psoriasis

    No full text
    Psoriasis is a chronic inflammatory, proliferative skin disease characterized by pathological skin lesions due to various exogenous and endogenous factors. It is associated with a number of biochemical and immunological disturbances. Recently, it has been suggested that increased reactive oxygen species (ROS) production and compromised function of antioxidant system may be involved in the pathogenesis of this disease. In the present study, 90 psoriasis patients were selected. Disease severity was assessed by psoriasis area severity index score and grouped as mild, moderate and severe (each group consists of 30 subjects) and compared with 30 healthy controls. Serum levels of malondialdehyde, nitric oxide end products and the activities of antioxidant enzymes such as erythrocyte-superoxide dismutase, catalase and total antioxidant status were investigated in these groups/subjects. As compared to controls, we found severitywise significantly increased serum malondialdehyde, nitric oxide end products with decrease in erythrocyte-superoxide dismutase activity, catalase activity and total antioxidant status in patients with psoriasis suggesting worsening of the disease. It seems to be linked with the enhancement of Reactive Oxygen Species production and decreased antioxidant potential in psoriasis
    corecore