5 research outputs found

    Low-cost communication-assisted line protection for multi-inverter based microgrids

    No full text
    Multi-inverter microgrid systems, particularly those with loop topology, offer higher power supply reliability and robustness compared to conventional radial distribution systems. In meshed systems, communication-less protection schemes have proved to be ineffective for multi-inverter microgrids due to bidirectional power flow, and limited and controlled fault currents generated by the voltage source converters interfacing the energy source to the network. This makes communicationassisted line protection schemes preferable for such systems despite the necessity for communication means. While these protection schemes are effective, their reliability depends much on the communication availability. This requires a back-up communication path in case the main one fails bringing up the cost issue that hinders their uptake. This paper proposes a novel and low-cost line protection based on directional blocking strategy that can operate as a main as well as a back-up protection to any protection scheme using communication means between the line terminals. As the main, it requires low-bandwidth communication system. As a back-up, it would share the same communication means with the main one and use those of the healthy lines when the faulted lines fails. Thus saving the cost of back-up communication system

    Microgrid protection using low-cost communication systems

    Get PDF
    Power electronics interface of renewable energy to system is now the trend in both transmission and distribution segments of power network. Unlike synchronous generators, the fault feeding and control characteristic of these renewable generators are different and mostly influenced by the topology, switching, and control deployed in power electronics interface. So, the network protection design and operational requirements are now challenged in the absence of large fault current. Although the differential current principle still works, its implementation is limited by the significant cost associated to its communication system. This paper proposes a differential line protection scheme based on local fault detection and comparing binary state outputs of relays at both ends of the line thus requiring a simple, flexible and low bandwidth communication system. The performance of the proposed scheme is assessed through simulation of an example system with several scenarios
    corecore