41 research outputs found

    Nanocomposite ZnO–SnO2 Nanofibers Synthesized by Electrospinning Method

    Get PDF
    We report the characterization of mixed oxides nanocomposite nanofibers of (1 − x) ZnO-(x)SnO2 (x ≤ 0.45) synthesized by electrospinning technique. The diameter of calcined nanofibers depends on Sn content. Other phases like SnO, ZnSnO3, and Zn2SnO4 were absent. Photoluminescence studies show that there is a change in the blue/violet luminescence confirming the presence of Sn in Zn-rich composition. Present study shows that the crystalline nanocomposite nanofibers with stoichiometry of (1 − x)ZnO-(x)SnO2 (x ≤ 0.45) stabilize after the calcination and possess some morphological and optical properties that strongly depend on Sn content

    Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models

    Get PDF

    CO2 sensing at room temperature using carbon nanotubes coated core fiber Bragg grating

    No full text
    The sensing of carbon dioxide (CO2) at room temperature, which has potential applications in environmental monitoring, healthcare, mining, biotechnology, food industry, etc., is a challenge for the scientific community due to the relative inertness of CO2. Here, we propose a novel gas sensor based on clad-etched Fiber Bragg Grating (FBG) with polyallylamine-amino-carbon nanotube coated on the surface of the core for detecting the concentrations of CO2 gas at room temperature, in ppm levels over a wide range (1000 ppm-4000 ppm). The limit of detection observed in polyallylamine-amino-carbon nanotube coated core-FBG has been found to be about 75 ppm. In this approach, when CO2 gas molecules interact with the polyallylamine-amino-carbon nanotube coated FBG, the effective refractive index of the fiber core changes, resulting in a shift in Bragg wavelength. The experimental data show a linear response of Bragg wavelength shift for increase in concentration of CO2 gas. Besides being reproducible and repeatable, the technique is fast, compact, and highly sensitive. (C) 2013 AIP Publishing LLC
    corecore