141 research outputs found

    Diffusion of MMPs on the Surface of Collagen Fibrils: The Mobile Cell Surface – Collagen Substratum Interface

    Get PDF
    Remodeling of the extracellular matrix catalyzed by MMPs is central to morphogenetic phenomena during development and wound healing as well as in numerous pathologic conditions such as fibrosis and cancer. We have previously demonstrated that secreted MMP-2 is tethered to the cell surface and activated by MT1-MMP/TIMP-2-dependent mechanism. The resulting cell-surface collagenolytic complex (MT1-MMP)2/TIMP-2/MMP-2 can initiate (MT1-MMP) and complete (MMP-2) degradation of an underlying collagen fibril. The following question remained: What is the mechanism of substrate recognition involving the two structures of relatively restricted mobility, the cell surface enzymatic complex and a collagen fibril embedded in the ECM? Here we demonstrate that all the components of the complex are capable of processive movement on a surface of the collagen fibril. The mechanism of MT1-MMP movement is a biased diffusion with the bias component dependent on the proteolysis of its substrate, not adenosine triphosphate (ATP) hydrolysis. It is similar to that of the MMP-1 Brownian ratchet we described earlier. In addition, both MMP-2 and MMP-9 as well as their respective complexes with TIMP-1 and -2 are capable of Brownian diffusion on the surface of native collagen fibrils without noticeable dissociation while the dimerization of MMP-9 renders the enzyme immobile. Most instructive is the finding that the inactivation of the enzymatic activity of MT1-MMP has a detectable negative effect on the cell force developed in miniaturized 3D tissue constructs. We propose that the collagenolytic complex (MT1-MMP)2/TIMP-2/MMP-2 represents a Mobile Cell Surface – Collagen Substratum Interface. The biological implications of MT1-MMP acting as a molecular ratchet tethered to the cell surface in complex with MMP-2 suggest a new mechanism for the role of spatially regulated peri-cellular proteolysis in cell-matrix interactions

    Seasonal Pattern of Batrachochytrium dendrobatidis Infection and Mortality in Lithobates areolatus: Affirmation of Vredenburg's β€œ10,000 Zoospore Rule”

    Get PDF
    To fully comprehend chytridiomycosis, the amphibian disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), it is essential to understand how Bd affects amphibians throughout their remarkable range of life histories. Crawfish Frogs (Lithobates areolatus) are a typical North American pond-breeding species that forms explosive spring breeding aggregations in seasonal and semipermanent wetlands. But unlike most species, when not breeding Crawfish Frogs usually live singlyβ€”in nearly total isolation from conspecificsβ€”and obligately in burrows dug by crayfish. Crayfish burrows penetrate the water table, and therefore offer Crawfish Frogs a second, permanent aquatic habitat when not breeding. Over the course of two years we sampled for the presence of Bd in Crawfish Frog adults. Sampling was conducted seasonally, as animals moved from post-winter emergence through breeding migrations, then back into upland burrow habitats. During our study, 53% of Crawfish Frog breeding adults tested positive for Bd in at least one sample; 27% entered breeding wetlands Bd positive; 46% exited wetlands Bd positive. Five emigrating Crawfish Frogs (12%) developed chytridiomycosis and died. In contrast, all 25 adult frogs sampled while occupying upland crayfish burrows during the summer tested Bd negative. One percent of postmetamorphic juveniles sampled were Bd positive. Zoospore equivalents/swab ranged from 0.8 to 24,436; five out of eight frogs with zoospore equivalents near or >10,000 are known to have died. In summary, Bd infection rates in Crawfish Frog populations ratchet up from near zero during the summer to over 25% following overwintering; rates then nearly double again during and just after breedingβ€”when mortality occursβ€”before the infection wanes during the summer. Bd-negative postmetamorphic juveniles may not be exposed again to this pathogen until they take up residence in crayfish burrows, or until their first breeding, some years later

    Monkeys and Humans Share a Common Computation for Face/Voice Integration

    Get PDF
    Speech production involves the movement of the mouth and other regions of the face resulting in visual motion cues. These visual cues enhance intelligibility and detection of auditory speech. As such, face-to-face speech is fundamentally a multisensory phenomenon. If speech is fundamentally multisensory, it should be reflected in the evolution of vocal communication: similar behavioral effects should be observed in other primates. Old World monkeys share with humans vocal production biomechanics and communicate face-to-face with vocalizations. It is unknown, however, if they, too, combine faces and voices to enhance their perception of vocalizations. We show that they do: monkeys combine faces and voices in noisy environments to enhance their detection of vocalizations. Their behavior parallels that of humans performing an identical task. We explored what common computational mechanism(s) could explain the pattern of results we observed across species. Standard explanations or models such as the principle of inverse effectiveness and a β€œrace” model failed to account for their behavior patterns. Conversely, a β€œsuperposition model”, positing the linear summation of activity patterns in response to visual and auditory components of vocalizations, served as a straightforward but powerful explanatory mechanism for the observed behaviors in both species. As such, it represents a putative homologous mechanism for integrating faces and voices across primates

    Mechanisms of T cell organotropism

    Get PDF
    F.M.M.-B. is supported by the British Heart Foundation, the Medical Research Council of the UK and the Gates Foundation

    Immunity of human epithelial ovarian carcinoma: the paradigm of immune suppression in cancer

    Get PDF
    • …
    corecore