16 research outputs found

    The effect of surface topography on the micellisation of hexadecyltrimethylammonium chloride at the silicon-aqueous interface

    Get PDF
    Amphiphilic aggregation at solid-liquid interfaces can generate mesostructured micelles that can serve as soft templates. In this study we have simulated the self-assembly of hexadecyltrimethylammonium chloride (C16TAC) surfactants at the Si(1 0 0)- and Si(1 1 1)-aqueous interfaces. The surfactants are found to form semicylindrical micelles on Si(1 0 0) but hemispherical micelles on Si(1 1 1). This difference in micelle structure is shown to be a consequence of the starkly different surface topographies that result from the reconstruction of the two silicon surfaces, and reveals that micelle structure can be governed by epitaxial matching even with non-polar substrates

    Filamentous Biopolymers on Surfaces: Atomic Force Microscopy Images Compared with Brownian Dynamics Simulation of Filament Deposition

    Get PDF
    Nanomechanical properties of filamentous biopolymers, such as the persistence length, may be determined from two-dimensional images of molecules immobilized on surfaces. For a single filament in solution, two principal adsorption scenarios are possible. Both scenarios depend primarly on the interaction strength between the filament and the support: i) For interactions in the range of the thermal energy, the filament can freely equilibrate on the surface during adsorption; ii) For interactions much stronger than the thermal energy, the filament will be captured by the surface without having equilibrated. Such a ‘trapping’ mechanism leads to more condensed filament images and hence to a smaller value for the apparent persistence length. To understand the capture mechanism in more detail we have performed Brownian dynamics simulations of relatively short filaments by taking the two extreme scenarios into account. We then compared these ‘ideal’ adsorption scenarios with observed images of immobilized vimentin intermediate filaments on different surfaces. We found a good agreement between the contours of the deposited vimentin filaments on mica (‘ideal’ trapping) and on glass (‘ideal’ equilibrated) with our simulations. Based on these data, we have developed a strategy to reliably extract the persistence length of short worm-like chain fragments or network forming filaments with unknown polymer-surface interactions

    Comparison of Therapeutic Effects between Pulsed and Continuous Wave 810-nm Wavelength Laser Irradiation for Traumatic Brain Injury in Mice

    Get PDF
    Background and Objective Transcranial low-level laser therapy (LLLT) using near-infrared light can efficiently penetrate through the scalp and skull and could allow non-invasive treatment for traumatic brain injury (TBI). In the present study, we compared the therapeutic effect using 810-nm wavelength laser light in continuous and pulsed wave modes in a mouse model of TBI. Study Design/Materials and Methods TBI was induced by a controlled cortical-impact device and 4-hours post-TBI 1-group received a sham treatment and 3-groups received a single exposure to transcranial LLLT, either continuous wave or pulsed at 10-Hz or 100-Hz with a 50% duty cycle. An 810-nm Ga-Al-As diode laser delivered a spot with diameter of 1-cm onto the injured head with a power density of 50-mW/cm2 for 12-minutes giving a fluence of 36-J/cm2. Neurological severity score (NSS) and body weight were measured up to 4 weeks. Mice were sacrificed at 2, 15 and 28 days post-TBI and the lesion size was histologically analyzed. The quantity of ATP production in the brain tissue was determined immediately after laser irradiation. We examined the role of LLLT on the psychological state of the mice at 1 day and 4 weeks after TBI using tail suspension test and forced swim test. Results The 810-nm laser pulsed at 10-Hz was the most effective judged by improvement in NSS and body weight although the other laser regimens were also effective. The brain lesion volume of mice treated with 10-Hz pulsed-laser irradiation was significantly lower than control group at 15-days and 4-weeks post-TBI. Moreover, we found an antidepressant effect of LLLT at 4-weeks as shown by forced swim and tail suspension tests. Conclusion The therapeutic effect of LLLT for TBI with an 810-nm laser was more effective at 10-Hz pulse frequency than at CW and 100-Hz. This finding may provide a new insight into biological mechanisms of LLLT.National Institutes of Health (U.S.) (NIH grant R01AI050875)Center for Integration of Medicine and Innovative Technology (DAMD17-02-2-0006)United States. Dept. of Defense. Congressionally Directed Medical Research Programs (W81XWH-09-1-0514)United States. Air Force Office of Scientific Research (Military Photomedicine Program (FA9950-04-1-0079))Japan. Ministry of Education, Culture, Sports, Science and TechnologyJapan Society for the Promotion of Scienc

    Designing molecular architecture to control diffusion and adsorption on insulating surfaces

    No full text
    We present the results of calculations that have been performed to simulate the adsorption and diffusion of several model molecules, consisting of two carboxylic acid binding groups connected to a molecular backbone, on the TiO2 (110) rutile surface in order to investigate the effect of molecular structure on their surface mobility. The calculations were performed using a set of interatomic potentials that have been specifically developed to correctly reproduce the molecule-surface interaction for this system, along with established potentials for the isolated surface and intramolecular interactions. These potentials were tested through a comparison of adsorption energies and diffusion barriers of prototype molecules. We show that the rigidity of the molecular structure can significantly affect both the adsorption energy and the energy barriers for diffusion on the surface. As a result of the simulations we suggest a rigid molecular structure that will maximize the diffusion barrier. Calculations such as these will enable the design of molecules in order to tailor their diffusive properties for specific applications. © 2008 American Chemical Society

    Intermolecular interactions in the molecular ferromagnetic NH4Ni(mnt)(2)center dot H2O

    No full text
    Molecular solids that exhibit ferromagnetism are rare, and thus there is considerable interest in understanding the magnetic coupling mechanisms that operate in the few known examples(1). One such material is the charge-transfer salt NH4Ni(mnt)(2) . H2O, which consists of stacked planar metal ligands separated by ammonium cations. This salt is an insulator with localized spins that exhibit long-range ferromagnetic order at low temperatures (below 4.5 K)(2).3 Here we show that the Curie temperature demarcating the transition to the ferromagnetic state increases markedly with pressure until ferromagnetic order abruptly disappears at 6.8 kbar, indicating that the magnetic coupling is very sensitive to intermolecular separation. Using quantum-chemical calculations(3), we show that this pressure dependence arises from a competition between ferromagnetic coupling (resulting from nickel-sulphur intermolecular spin interactions), and antiferromagnetic coupling (from nickel-nickel interactions). We suggest that a similar interplay of spin-polarization effects might play a key role in determining the nature of the ground states (metallic, superconducting and so forth) observed in other molecular materials of this structural type(4,5)
    corecore