12 research outputs found

    Infrared absorption studies on some derivatives of xanthic, dithiocarbamic and trithiocarbonic acids

    No full text
    The infrared absorption spectra of some of the derivatives of xanthic Image dithiocarbamic Image and trithiocarbonic Image acids are studied in the sodium chloride optics region and the bands assigned to group frequencies. The position of C---O---C and C=S bands in the derivatives of xanthic acid has been discussed from theoretical and experimental evidences and it is suggested that the two strong bands around 1200 and 1030 cm−1 are due to the Image group. The bands around 980 and 1050 cm−1 in the derivatives of dithiocarbamic and trithiocarbonic acids respectively have been assigned to C=S group frequencies. These bands shift to lower frequency in the corresponding ionic compounds while the bands around 1030 and 1200 cm−1 in the ionic compounds of xanthic acid shift to higher and lower frequencies respectively

    Electronic absorption spectra of selenocarbonyl and thiocarbonyl compounds

    No full text
    Electronic absorption spectra of a variety of thiocarbonyl and selenocarbonyl compounds have been compared to point out their similarities. Interesting correlations between the absorption maxima and electronegativities of substituents in both the seleno- and thio-carbonyl compounds have been reported

    Jodimetric estimation of water-soluble dithiocarbamates

    No full text
    Iodimetric estimation of dialkyl dithiocarbamate in alcoholic solution is not accurate. The method has not met with success for the water-soluble dithiocarbamates before. A simple and accurate iodimetric method has been developed for the estimation of water-soluble dithiocarbamates. The success of the method is due to the removal of the oxidation product which interferes during the titration with iodine

    An acid method for the volumetric estimation of water-soluble dithiocarbamates

    No full text
    Dithiocarbamates have been estimated previously by reaction with a strong acid, the carbon disulfide evolved being converted into a xanthate and the latter estimated iodimetrically. In the present method, a water-soluble dithiocarbamate is reacted with a decinormal mineral acid and the excess acid is determined to compute the amount of dithiocarbamate present. This method is applicable for the determination of a dithiocarbamate in a mixture containing thiuram disulfide
    corecore