4,312 research outputs found

    A Trade-Off between Somatosensory and Auditory Related Brain Activity during Object Naming But Not Reading.

    Get PDF
    The parietal operculum, particularly the cytoarchitectonic area OP1 of the secondary somatosensory area (SII), is involved in somatosensory feedback. Using fMRI with 58 human subjects, we investigated task-dependent differences in SII/OP1 activity during three familiar speech production tasks: object naming, reading and repeatedly saying "1-2-3." Bilateral SII/OP1 was significantly suppressed (relative to rest) during object naming, to a lesser extent when repeatedly saying "1-2-3" and not at all during reading. These results cannot be explained by task difficulty but the contrasting difference between naming and reading illustrates how the demands on somatosensory activity change with task, even when motor output (i.e., production of object names) is matched. To investigate what determined SII/OP1 deactivation during object naming, we searched the whole brain for areas where activity increased as that in SII/OP1 decreased. This across subject covariance analysis revealed a region in the right superior temporal sulcus (STS) that lies within the auditory cortex, and is activated by auditory feedback during speech production. The tradeoff between activity in SII/OP1 and STS was not observed during reading, which showed significantly more activation than naming in both SII/OP1 and STS bilaterally. These findings suggest that, although object naming is more error prone than reading, subjects can afford to rely more or less on somatosensory or auditory feedback during naming. In contrast, fast and efficient error-free reading places more consistent demands on both types of feedback, perhaps because of the potential for increased competition between lexical and sublexical codes at the articulatory level

    Using principal component analysis to understand the variability of PDS 456

    Get PDF
    We present a spectral-variability analysis of the low-redshift quasar PDS 456 using principal component analysis. In the XMM-Newton data, we find a strong peak in the first principal component at the energy of the Fe absorption line from the highly blueshifted outflow. This indicates that the absorption feature is more variable than the continuum, and that it is responding to the continuum. We find qualitatively different behaviour in the Suzaku data, which is dominated by changes in the column density of neutral absorption. In this case, we find no evidence of the absorption produced by the highly ionized gas being correlated with this variability. Additionally, we perform simulations of the source variability, and demonstrate that PCA can trivially distinguish between outflow variability correlated, anti-correlated, and un-correlated with the continuum flux. Here, the observed anti-correlation between the absorption line equivalent width and the continuum flux may be due to the ionization of the wind responding to the continuum. Finally, we compare our results with those found in the narrow-line Seyfert 1 IRAS 13224-3809. We find that the Fe K UFO feature is sharper and more prominent in PDS 456, but that it lacks the lower energy features from lighter elements found in IRAS 13224-3809, presumably due to differences in ionization

    Sensory-to-motor integration during auditory repetition: a combined fMRI and lesion study.

    Get PDF
    The aim of this paper was to investigate the neurological underpinnings of auditory-to-motor translation during auditory repetition of unfamiliar pseudowords. We tested two different hypotheses. First we used functional magnetic resonance imaging in 25 healthy subjects to determine whether a functionally defined area in the left temporo-parietal junction (TPJ), referred to as Sylvian-parietal-temporal region (Spt), reflected the demands on auditory-to-motor integration during the repetition of pseudowords relative to a semantically mediated nonverbal sound-naming task. The experiment also allowed us to test alternative accounts of Spt function, namely that Spt is involved in subvocal articulation or auditory processing that can be driven either bottom-up or top-down. The results did not provide convincing evidence that activation increased in either Spt or any other cortical area when non-semantic auditory inputs were being translated into motor outputs. Instead, the results were most consistent with Spt responding to bottom up or top down auditory processing, independent of the demands on auditory-to-motor integration. Second, we investigated the lesion sites in eight patients who had selective difficulties repeating heard words but with preserved word comprehension, picture naming and verbal fluency (i.e., conduction aphasia). All eight patients had white-matter tract damage in the vicinity of the arcuate fasciculus and only one of the eight patients had additional damage to the Spt region, defined functionally in our fMRI data. Our results are therefore most consistent with the neurological tradition that emphasizes the importance of the arcuate fasciculus in the non-semantic integration of auditory and motor speech processing

    Discovery of an ~2-h high-frequency X-ray QPO and iron KĪ± reverberation in the active galaxy MS 2254.9-3712

    Get PDF
    We report the discovery of a āˆ¼1.5Ɨ10āˆ’4\sim 1.5 \times 10^{-4} Hz (āˆ¼2\sim 2 hr) X-ray quasi-periodic oscillation (QPO) in the active galaxy MS 2254.9-3712, using a āˆ¼70\sim 70 ks XMM-Newton observation. The QPO is significantly detected (āˆ¼3.3Ļƒ\sim 3.3 \sigma) in the 1.2āˆ’5.01.2 - 5.0 keV band only, connecting its origin with the primary X-ray power-law continuum. We detect a highly coherent soft lag between the 0.3āˆ’0.70.3 - 0.7 keV and 1.2āˆ’5.01.2 - 5.0 keV energy bands at the QPO frequency and at a frequency band in a 3:2 ratio, strongly suggesting the presence of a QPO harmonic. An iron KĪ±\alpha reverberation lag is found at the harmonic frequency, indicating the reflecting material subtends some angle to the primary continuum, which is modulated by the QPO mechanism. Frequency resolved spectroscopy reveals the QPO and harmonic to have a hard energy dependence. These properties of the QPO variability, together with the current black hole mass estimate, Mbhāˆ¼4Ɨ106MsunM_{\rm bh} \sim 4 \times 10^{6} M_{\rm sun}, are consistent with the QPO originating from the same process as the high frequency QPO phenomenon observed in black hole X-ray binaries. Principle component analysis reveals the spectral variability in MS 2254.9-3712 is similar to that of the active galaxy RE J1034+396, a source which also displays an X-ray QPO. This suggests a distinct spectral variability pattern for accreting black holes when in a state where QPOs are present

    Revealing the ultrafast outflow in IRAS 13224-3809 through spectral variability

    Get PDF
    We present an analysis of the long-term X-ray variability of the extreme narrow-line Seyfert 1 (NLS1) galaxy IRAS 13224-3809 using principal component analysis (PCA) and fractional excess variability (Fvar) spectra to identify model-independent spectral components. We identify a series of variability peaks in both the first PCA component and Fvar spectrum which correspond to the strongest predicted absorption lines from the ultra-fast outflow (UFO) discovered by Parker et al. (2017). We also find higher order PCA components, which correspond to variability of the soft excess and reflection features. The subtle differences between RMS and PCA results argue that the observed flux-dependence of the absorption is due to increased ionization of the gas, rather than changes in column density or covering fraction. This result demonstrates that we can detect outflows from variability alone, and that variability studies of UFOs are an extremely promising avenue for future research

    Marine bioinvasion management: structural framework

    Get PDF
    Significant global change has occurred through the accidental and intentional human mediated introductions of species in regions outside of their evolutionary origins can no longer be disputed (e.g., Lubchenco et al. 1991; Carlton 2001; Pimentel 2002). This change is well documented in a variety of terrestrial and freshwater ecosystems (e.g., Drake and Mooney 1989) and is becoming increasingly apparent in marine and estuarine habitats in all of the worldā€™s oceans (e.g., Carlton 2001; Chap. 2, Carlton). Documenting the scale and rates of marine introductions and the subsequent changes to invaded systems has captured much of the marine invasion ecology effort during the last 25 years (e.g., Grosholz et al. 2000; Carlton and Ruiz 2004). While the lessons that can be learned about evolution, ecosystem function, community dynamics, and species biology and ecology from the study of biological introductions are fascinating (e.g., Harper 1965; Carlton and Ruiz 2004), the challenge ā€œwhat should we and/or what can we do?ā€ remains. The options appear to be simple, however the details of implementation are difficult: we can choose to do nothing or we can choose to act

    Broadband Observations of High Redshift Blazars

    Get PDF
    We present a multi-wavelength study of four high redshift blazars, S5 0014+81 (z = 3.37), CGRaBS J0225+1846 (z = 2.69), BZQ J1430+4205 (z = 4.72), and 3FGL J1656.2āˆ’3303 (z = 2.40) using quasi-simultaneous data from the Swift, Nuclear Spectroscopic Telescope Array (NuSTAR) and the Fermi-Large Area Telescope (LAT) and also archival XMM-Newton observations. Other than 3FGL J1656.2āˆ’3303, none of the sources were known as Ī³-ray emitters, and our analysis of ~7.5 yr of LAT data reveals the first time detection of statistically significant Ī³-ray emission from CGRaBS J0225+1846. We generate the broadband spectral energy distributions (SED) of all the objects, centering at the epoch of NuSTAR observations and reproduce them using a one-zone leptonic emission model. The opticalāˆ’UV emission in all the objects can be explained by radiation from the accretion disk, whereas the X-ray to Ī³-ray windows of the SEDs are found to be dominated by inverse Compton scattering off the broad line region photons. All of them host black holes that are billions of solar masses. Comparing the accretion disk luminosity and the jet power of these sources with a large sample of blazars, we find them to occupy a high disk luminosityā€“jet power regime. We also investigate the X-ray spectral properties of the sources in detail with a major focus on studying the causes of soft X-ray deficit, a feature generally seen in high redshift radio-loud quasars. We summarize that this feature could be explained based on the intrinsic curvature in the jet emission rather than being due to the external effects predicted in earlier studies, such as host galaxy and/or warm absorption.A.C.F. thanks Greg Madejski for discussions on the curvature of blazar X-ray spectra and acknowledges support from ERC Advanced Grant 340442. This research has made use of data, software, and/or web tools obtained from NASAs High Energy Astrophysics Science Archive Research Center (HEASARC), a service of Goddard Space Flight Center and the Smithsonian Astrophysical Observatory. Part of this work is based on archival data, software, or online services provided by the ASI Science Data Center (ASDC). This research has made use of the XRT Data Analysis Software (XRTDAS) developed under the responsibility of the ASDC, Italy. This research has also made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (Caltech, USA). This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/
    • ā€¦
    corecore