22 research outputs found

    Methods to Study Centrosomes and Cilia in Drosophila

    Get PDF
    The deposited item is a book chapter and is part of the series " Methods in Molecular Biology book series ([MIMB, volume 1454]) published by the publisher Humana Press.The deposited book chapter is a pre-print version and hasn't been submitted to peer reviewing.There is no public supplementary material available for this publication.This publication hasn't any creative commons license associated.Centrioles and cilia are highly conserved eukaryotic organelles. Drosophila melanogaster is a powerful genetic and cell biology model organism, extensively used to discover underlying mechanisms of centrosome and cilia biogenesis and function. Defects in centrosomes and cilia reduce fertility and affect different sensory functions, such as proprioception, olfaction, and hearing. The fly possesses a large diversity of ciliary structures and assembly modes, such as motile, immotile, and intraflagellar transport (IFT)-independent or IFT-dependent assembly. Moreover, all the diverse ciliated cells harbor centrioles at the base of the cilia, called basal bodies, making the fly an attractive model to better understand the biology of this organelle. This chapter describes protocols to visualize centrosomes and cilia by fluorescence and electron microscopy.Fundação Portuguesa para a Ciência e Tecnologia grants: (SFRH/BPD/87479/2012, SFRH/BD/52176/2013); EMBO installation grant; ERC starting grant.info:eu-repo/semantics/publishedVersio

    Assays to Detect β-Tubulin Codon 200 Polymorphism in Trichuris trichiura and Ascaris lumbricoides

    Get PDF
    The soil-transmitted helminths Ascaris lumbricoides and Trichuris trichiura are gastrointestinal nematodes causing many disabilities in tropical parts of the developing world. Control programs, such as “The Focussing Resources on Effective School Health” (FRESH) Partnership, have been implemented to remove human soil-transmitted nematodes through large-scale use of benzimidazole anthelmintic drugs for school-aged children in developing countries. The benzimidazole drugs albendazole and mebendazole are commonly used as a single annual treatment in areas where the burden is high. In veterinary nematodes, repeated use of these anthelmintics has selected for resistant populations. Resistance to benzimidazoles is commonly associated with a single amino acid substitution from phenylalanine to tyrosine in the β-tubulin gene at position 200. In this study, we have developed pyrosequencing assays for codon 200 in A. lumbricoides and T. trichiura to screen for this single nucleotide polymorphism (SNP) in β-tubulin. The 200Tyr SNP was detected at low frequency in T. trichiura from non-treated people from Kenya and at high frequency in T. trichiura from treated people from Panama. The presence of the resistance-associated SNP may play a role in the sometimes low and variable efficacy of benzimidazole anthelmintics against T. trichiura

    A Research Agenda for Helminth Diseases of Humans: Intervention for Control and Elimination

    Get PDF
    Recognising the burden helminth infections impose on human populations, and particularly the poor, major intervention programmes have been launched to control onchocerciasis, lymphatic filariasis, soil-transmitted helminthiases, schistosomiasis, and cysticercosis. The Disease Reference Group on Helminth Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR), was given the mandate to review helminthiases research and identify research priorities and gaps. A summary of current helminth control initiatives is presented and available tools are described. Most of these programmes are highly dependent on mass drug administration (MDA) of anthelmintic drugs (donated or available at low cost) and require annual or biannual treatment of large numbers of at-risk populations, over prolonged periods of time. The continuation of prolonged MDA with a limited number of anthelmintics greatly increases the probability that drug resistance will develop, which would raise serious problems for continuation of control and the achievement of elimination. Most initiatives have focussed on a single type of helminth infection, but recognition of co-endemicity and polyparasitism is leading to more integration of control. An understanding of the implications of control integration for implementation, treatment coverage, combination of pharmaceuticals, and monitoring is needed. To achieve the goals of morbidity reduction or elimination of infection, novel tools need to be developed, including more efficacious drugs, vaccines, and/or antivectorial agents, new diagnostics for infection and assessment of drug efficacy, and markers for possible anthelmintic resistance. In addition, there is a need for the development of new formulations of some existing anthelmintics (e.g., paediatric formulations). To achieve ultimate elimination of helminth parasites, treatments for the above mentioned helminthiases, and for taeniasis and food-borne trematodiases, will need to be integrated with monitoring, education, sanitation, access to health services, and where appropriate, vector control or reduction of the parasite reservoir in alternative hosts. Based on an analysis of current knowledge gaps and identification of priorities, a research and development agenda for intervention tools considered necessary for control and elimination of human helminthiases is presented, and the challenges to be confronted are discussed
    corecore