23 research outputs found

    Enzymatic hydrophobic modification of jute fibers via grafting to reinforce composites

    Get PDF
    Horseradish peroxidase (HRP)/H2O2 system catalyzes the free-radical polymerization of aromatic compounds such as lignins and gallate esters. In this work, dodecyl gallate (DG) was grafted onto the surfaces of lignin-rich jute fabrics by HRP-mediated oxidative polymerization with an aim to enhance the hydrophobicity of the fibers. The DG-grafted jute fibers and reaction products of their model compounds were characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results clearly indicated the grafting of DG to the jute fiber by HRP. Furthermore, the hydrophobicity of jute fabrics was determined by measuring the wetting time and static contact angle. Compared to the control sample, the wetting time and static contact angle of the grated fabrics changed from ~1 s to 1 h and from ~0° to 123.68°, respectively. This clearly proved that the hydrophobicity of jute fabrics improved considerably. Conditions of the HRP-catalyzed DG-grafting reactions were optimized in terms of the DG content of modified jute fabrics. Moreover, the results of breaking strength and elongation of DG-grafted jute/ polypropylene (PP) composites demonstrated improved reinforcement of the composite due to enzymatic hydrophobic modification of jute fibers.This work was financially supported by the National Natural Science Foundation of China (51173071), the Program for New Century Excellent Talents in University (NCET-12-0883), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R26) the Fundamental Research Funds for the Central Universities (JUSRP51312B, JUSRP51505), and the Graduate Student Innovation Plan of Jiangsu Province of China (SJLX_0527)

    Electrospray Ionization with High-Resolution Mass Spectrometry as a Tool for Lignomics: Lignin Mass Spectrum Deconvolution

    Get PDF
    Capability to characterize lignin, lignocellulose, and their degradation products is essential for development of new renewable feedstocks. Electrospray ionization high-resolution time-offlight mass spectrometry (ESI HR TOF MS) method was developed expanding the lignomics toolkit while targeting the simultaneous detection of low and high molecular weight (MW) lignin species. The effect of a broad range of electrolytes and various ionization conditions on ion formation and ionization effectiveness was studied using a suite of mono-, di- and triarene lignin model compounds as well as intact lignin. Contrary to the previous studies, the positive ionization mode was found to be more effective for methoxy-substituted arenes and polyphenols, i.e., species of a broadly varied MW structurally similar to the native lignin. For the first time, we report an effective formation of multiply charged species of lignin with the subsequent mass spectrum deconvolution in the presence of 100 mmol·L-1 formic acid in the positive ESI mode. The developed method enabled the detection of lignin species with an MW between 150 and 9,000 Da or higher, depending on the mass analyzer. The obtained Mn and Mw values of 1,500 and 2,500 Da, respectively, were in good agreement with those determined by gel permeation chromatography. Furthermore, the deconvoluted ESI mass spectrum was similar to that obtained with matrixassisted laser desorption/ionization (MALDI) TOF MS, yet featuring a higher signal-to-noise ratio. The formation of multiply charged species was confirmed with ESI ion mobility HR Q-TOF MS

    Front line defenders of the ecological niche! Screening the structural diversity of peptaibiotics from saprotrophic and fungicolous Trichoderma/Hypocrea species

    Get PDF

    Enzymatic modification of jute fabrics for enhancing the reinforcement in jute/PP composites

    No full text
    In this work, laccase was employed to improve the properties of lignocellulosic jute fabrics and then the modified jute was used as the fiber reinforcement of polypropylene (PP) matrix composites to improve its reinforcing effect on the polymer resins and obtain composite materials with better performance. The decrease in the COH component and the increase in the COC component on the surface of laccase-treated jute fabrics suggested that phenolic hydroxyl groups of lignins on the jute fiber surface were oxidized by laccase and the produced phenoxyl radicals were coupled to form ether structures. The laccase-treated jute fiber surface became smooth with lignins attached tightly. Moreover, the surface hydrophobicity and tensile properties of the jute fabrics were increased via the laccase-mediated reactions of lignins. PP composites reinforced by the laccase-treated jute fabrics showed higher breaking strength, storage modulus, and melting temperature than the control. The fracture surface of the laccase-treated jute fabric/PP composites was neat and jute fibers on the section surface were surrounded by PP resins closely, which indicated better interfacial adhesion between the modified jute reinforcement and PP matrix.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was financially supported by the National Natural Science Foundations of China (51603087 and 51673087); Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R26), and Fundamental Research Funds for the Central Universities (JUSRP51717A).info:eu-repo/semantics/publishedVersio

    Tyrosinase-catalyzed site-specific immobilization of engineered C-phycocyanin to surface

    No full text
    Enzymatic crosslinking of proteins is often limited by the steric availability of the target residues, as of tyrosyl side chains in the case of tyrosinase. Carrying an N-terminal peptide-tag containing two tyrosine residues, the fluorescent protein C-phycocyanin HisCPC from Synechocystis sp. PCC6803 was crosslinked to fluorescent high-molecular weight forms with tyrosinase. Crosslinking with tyrosinase in the presence of L-tyrosine produced non fluorescent high-molecular weight products. Incubated in the presence of tyrosinase, HisCPC could also be immobilized to amino-modified polystyrene beads thus conferring a blue fluorescence. Crosslinking and immobilization were site-specific as both processes required the presence of the N-terminal peptide in HisCPC
    corecore