31 research outputs found
Recommended from our members
Axonal velocity distributions in neural field equations.
Contains fulltext :
88463.pdf (publisher's version ) (Open Access)By modelling the average activity of large neuronal populations, continuum mean field models (MFMs) have become an increasingly important theoretical tool for understanding the emergent activity of cortical tissue. In order to be computationally tractable, long-range propagation of activity in MFMs is often approximated with partial differential equations (PDEs). However, PDE approximations in current use correspond to underlying axonal velocity distributions incompatible with experimental measurements. In order to rectify this deficiency, we here introduce novel propagation PDEs that give rise to smooth unimodal distributions of axonal conduction velocities. We also argue that velocities estimated from fibre diameters in slice and from latency measurements, respectively, relate quite differently to such distributions, a significant point for any phenomenological description. Our PDEs are then successfully fit to fibre diameter data from human corpus callosum and rat subcortical white matter. This allows for the first time to simulate long-range conduction in the mammalian brain with realistic, convenient PDEs. Furthermore, the obtained results suggest that the propagation of activity in rat and human differs significantly beyond mere scaling. The dynamical consequences of our new formulation are investigated in the context of a well known neural field model. On the basis of Turing instability analyses, we conclude that pattern formation is more easily initiated using our more realistic propagator. By increasing characteristic conduction velocities, a smooth transition can occur from self-sustaining bulk oscillations to travelling waves of various wavelengths, which may influence axonal growth during development. Our analytic results are also corroborated numerically using simulations on a large spatial grid. Thus we provide here a comprehensive analysis of empirically constrained activity propagation in the context of MFMs, which will allow more realistic studies of mammalian brain activity in the future.1 januari 201
Demyelination in mild cognitive impairment suggests progression path to Alzheimer's disease.
The preclinical Alzheimer's disease (AD) - amnestic mild cognitive impairment (MCI) - is manifested by phenotypes classified into exclusively memory (single-domain) MCI (sMCI) and multiple-domain MCI (mMCI). We suggest that typical MCI-to-AD progression occurs through the sMCI-to-mMCI sequence as a result of the extension of initial pathological processes. To support this hypothesis, we assess myelin content with a Magnetization Transfer Ratio (MTR) in 21 sMCI and 21 mMCI patients and in 42 age-, sex-, and education-matched controls. A conjunction analysis revealed MTR reduction shared by sMCI and mMCI groups in the medial temporal lobe and posterior structures including white matter (WM: splenium, posterior corona radiata) and gray matter (GM: hippocampus; parahippocampal and lingual gyri). A disjunction analysis showed the spread of demyelination to prefrontal WM and insula GM in executive mMCI. Our findings suggest that demyelination starts in the structures affected by neurofibrillary pathology; its presence correlates with the clinical picture and indicates the method of MCI-to-AD progression. In vivo staging of preclinical AD can be developed in terms of WM/GM demyelination
Predictive Value of Morphological Features in Patients with Autism versus Normal Controls
<p>We investigated the predictive power of morphological features in 224 autistic patients and 224 matched-pairs controls. To assess the relationship between the morphological features and autism, we used the receiver operator curves (ROC). In addition, we used recursive partitioning (RP) to determine a specific pattern of abnormalities that is characteristic for the difference between autistic children and typically developing controls. The present findings showed that morphological features are significantly increased in patients with autism. Using ROC and RP, some of the morphological measures also led to strong predictive accuracy. Facial asymmetry, multiple hair whorls and prominent forehead significantly differentiated patients with autism from controls. Future research on multivariable risk prediction models may benefit from the use of morphological features.</p>
Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior
Microglia are phagocytic cells that infiltrate the brain during development and have a role in the elimination of synapses during brain maturation. Changes in microglial morphology and gene expression have been associated with neurodevelopmental disorders. However, it remains unknown whether these changes are a primary cause or a secondary consequence of neuronal deficits. Here we tested whether a primary deficit in microglia was sufficient to induce some autism-related behavioral and functional connectivity deficits. Mice lacking the chemokine receptor Cx3cr1 exhibit a transient reduction of microglia during the early postnatal period and a consequent deficit in synaptic pruning. We show that deficient synaptic pruning is associated with weak synaptic transmission, decreased functional brain connectivity, deficits in social interaction and increased repetitive-behavior phenotypes that have been previously associated with autism and other neurodevelopmental and neuropsychiatric disorders. These findings open the possibility that disruptions in microglia-mediated synaptic pruning could contribute to neurodevelopmental and neuropsychiatric disorders