31 research outputs found

    Noninvasive estimation of tumour viability in a xenograft model of human neuroblastoma with proton magnetic resonance spectroscopy (1H MRS)

    Get PDF
    The aim of the study was to evaluate proton magnetic resonance spectroscopy (1H MRS) for noninvasive biological characterisation of neuroblastoma xenografts in vivo. For designing the experiments, human neuroblastoma xenografts growing subcutaneously in nude rats were analysed in vivo with 1H MRS and magnetic resonance imaging at 4.7 T. The effects of spontaneous tumour growth and antiangiogenesis treatment, respectively, on spectral characteristics were evaluated. The spectroscopic findings were compared to tumour morphology, proliferation and viable tumour tissue fraction. The results showed that signals from choline (Cho)-containing compounds and mobile lipids (MLs) dominated the spectra. The individual ML/Cho ratios for both treated and untreated tumours were positively correlated with tumour volume (P<0.05). There was an inverse correlation between the ML/Cho ratio and the viable tumour fraction (r=−0.86, P<0.001). Higher ML/Cho ratios concomitant with pronounced histological changes were seen in spectra from tumours treated with the antiangiogenic drug TNP-470, compared to untreated control tumours (P<0.05). In conclusion, the ML/Cho ratio obtained in vivo by 1H MRS enabled accurate assessment of the viable tumour fraction in a human neuroblastoma xenograft model. 1H MRS also revealed early metabolic effects of antiangiogenesis treatment. 1H MRS could prove useful as a tool to monitor experimental therapy in preclinical models of neuroblastoma, and possibly also in children

    Magnitude-intrinsic water-fat ambiguity can be resolved with multipeak fat modeling and a multipoint search method

    No full text
    Purpose To develop a postprocessing algorithm for multiecho chemical-shift encoded water–fat separation that estimates proton density fat fraction (PDFF) maps over the full dynamic range (0-100%) using multipeak fat modeling and multipoint search optimization. To assess its accuracy, reproducibility, and agreement with state-of-the-art complex-based methods, and to evaluate its robustness to artefacts in abdominal PDFF maps. Methods We introduce MAGO (MAGnitude-Only), a magnitude-based reconstruction that embodies multipeak liver fat spectral modeling and multipoint optimization, and which is compatible with asymmetric echo acquisitions. MAGO is assessed first for accuracy and reproducibility on publicly available phantom data. Then, MAGO is applied to N = 178 UK Biobank cases, in which its liver PDFF measures are compared using Bland-Altman analysis with those from a version of the hybrid iterative decomposition of water and fat with echo asymmetry and least squares estimation (IDEAL) algorithm, LiverMultiScan IDEAL (LMS IDEAL, Perspectum Diagnostics Ltd, Oxford, UK). Finally, MAGO is tested on a succession of high field challenging cases for which LMS IDEAL generated artefacts in the PDFF maps. Results Phantom data showed accurate, reproducible MAGO PDFF values across manufacturers, field strengths, and acquisition protocols. Moreover, we report excellent agreement between MAGO and LMS IDEAL for 6-echo, 1.5 tesla human acquisitions (bias = −0.02% PDFF, 95% confidence interval = ±0.13% PDFF). When tested on 12-echo, 3 tesla cases from different manufacturers, MAGO was shown to be more robust to artefacts compared to LMS IDEAL. Conclusion MAGO resolves the water–fat ambiguity over the entire fat fraction dynamic range without compromising accuracy, therefore enabling robust PDFF estimation where phase data is inaccessible or unreliable and complex-based and hybrid methods fail

    Measurement of liver iron by magnetic resonance imaging in the UK Biobank population

    No full text
    The burden of liver disease continues to increase in the UK, with liver cirrhosis reported to be the third most common cause of premature death. Iron overload, a condition that impacts liver health, was traditionally associated with genetic disorders such as hereditary haemochromatosis, however, it is now increasingly associated with obesity, type-2 diabetes and non-alcoholic fatty liver disease. The aim of this study was to assess the prevalence of elevated levels of liver iron within the UK Biobank imaging study in a cohort of 9108 individuals. Magnetic resonance imaging (MRI) was undertaken at the UK Biobank imaging centre, acquiring a multi-echo spoiled gradient-echo single-breath-hold MRI sequence from the liver. All images were analysed for liver iron and fat (expressed as proton density fat fraction or PDFF) content using LiverMultiScan. Liver iron was measured in 97.3% of the cohort. The mean liver iron content was 1.32 ± 0.32 mg/g while the median was 1.25 mg/g (min: 0.85 max: 6.44 mg/g). Overall 4.82% of the population were defined as having elevated liver iron, above commonly accepted 1.8 mg/g threshold based on biochemical iron measurements in liver specimens obtained by biopsy. Further analysis using univariate models showed elevated liver iron to be related to male sex (p&lt;10-16, r2 = 0.008), increasing age (p&lt;10-16, r2 = 0.013), and red meat intake (p&lt;10-16, r2 = 0.008). Elevated liver fat (&gt;5.6% PDFF) was associated with a slight increase in prevalence of elevated liver iron (4.4% vs 6.3%, p = 0.0007). This study shows that population studies including measurement of liver iron concentration are feasible, which may in future be used to better inform patient stratification and treatment
    corecore