4,639 research outputs found
MRI for Fetal Developmental Brain Abnormalities: Perspectives From the Pregnant Patient
Ultrasound is routinely used as a prenatal screening and diagnostic tool but haslimitations. Some anomalies in the developing fetal brain can be difficult to detect, andin utero MRI (iuMRI) is increasingly used as an adjunct to ultrasound. However,understandings of patient perspectives of iuMRI technology are still developing. Ourqualitative study of 41 mothers who experienced iuMRI was embedded in a diagnosticaccuracy trial, and aimed to inform policy recommendations that might stem from theclinical findings. Our analysis suggests that iuMRI is seen as useful, offering valuableadditional information, and helping women make decisions about care options at adifficult time. However, patients’ experiences demonstrated the uncertainty and anxietyassociated with the prenatal diagnosis (PND) process relating to brain anomaliesincluding the challenges of their embodied contributions. Our findings suggest morecould be done to reduce the impact on pregnant women during an already difficult,anxious period
Stellar Dynamics and Black Holes
Chandrasekhar's most important contribution to stellar dynamics was the
concept of dynamical friction. I briefly review that work, then discuss some
implications of Chandrasekhar's theory of gravitational encounters for motion
in galactic nuclei.Comment: Talk presented at the "Chandrasekhar Centenary Conference" (2010
Recommended from our members
Early Ultraviolet Observations of Type IIn Supernovae Constrain the Asphericity of Their Circumstellar Material
© 2020. The American Astronomical Society. All rights reserved.. We present a survey of the early evolution of 12 Type IIn supernovae (SNe IIn) at ultraviolet and visible light wavelengths. We use this survey to constrain the geometry of the circumstellar material (CSM) surrounding SN IIn explosions, which may shed light on their progenitor diversity. In order to distinguish between aspherical and spherical CSM, we estimate the blackbody radius temporal evolution of the SNe IIn of our sample, following the method introduced by Soumagnac et al. We find that higher-luminosity objects tend to show evidence for aspherical CSM. Depending on whether this correlation is due to physical reasons or to some selection bias, we derive a lower limit between 35% and 66% for the fraction of SNe IIn showing evidence for aspherical CSM. This result suggests that asphericity of the CSM surrounding SNe IIn is common - consistent with data from resolved images of stars undergoing considerable mass loss. It should be taken into account for more realistic modeling of these events
Exon skipping induces uniform dystrophin rescue with dose-dependent restoration of serum miRNA biomarkers and muscle biophysical properties
Therapies that restore dystrophin expression are presumed to correct Duchenne muscular dystrophy (DMD), with antisense-mediated exon skipping being the leading approach. Here we aimed to determine whether exon skipping using a peptide-phosphorodiamidate morpholino oligonucleotide (PPMO) conjugate results in dose-dependent restoration of uniform dystrophin localization, together with correction of putative DMD serum and muscle biomarkers. Dystrophin-deficient mdx mice were treated with a PPMO (Pip9b2-PMO) designed to induce Dmd exon 23 skipping at single, ascending intravenous doses (3, 6, or 12 mg/kg) and sacrificed 2 weeks later. Dose-dependent exon skipping and dystrophin protein restoration were observed, with dystrophin uniformly distributed at the sarcolemma of corrected myofibers at all doses. Serum microRNA biomarkers (i.e., miR-1a-3p, miR-133a-3p, miR-206-3p, miR-483-3p) and creatinine kinase levels were restored toward wild-type levels after treatment in a dose-dependent manner. All biomarkers were strongly anti-correlated with both exon skipping level and dystrophin expression. Dystrophin rescue was also strongly positively correlated with muscle stiffness (i.e., Young’s modulus) as determined by atomic force microscopy (AFM) nanoindentation assay. These data demonstrate that PPMO-mediated exon skipping generates myofibers with uniform dystrophin expression and that both serum microRNA biomarkers and muscle AFM have potential utility as pharmacodynamic biomarkers of dystrophin restoration therapy in DMD
Iron oxidation at low temperature (260–500 C) in air and the effect of water vapor
The oxidation of iron has been studied at low temperatures (between 260 and 500 C) in dry air or air with 2 vol% H2O, in the framework of research on dry corrosion of nuclear waste containers during long-term interim storage. Pure iron is regarded as a model material for low-alloyed steel. Oxidation tests were performed in a thermobalance (up to 250 h) or in a laboratory furnace (up to 1000 h). The oxide scales formed were characterized using SEM-EDX, TEM, XRD, SIMS and EBSD techniques. The parabolic rate constants deduced from microbalance experiments were found to be in good agreement with the few existing values of the literature. The presence of water vapor in air was found to strongly influence the transitory stages of the kinetics. The entire structure of the oxide scale was composed of an internal duplex magnetite scale made of columnar grains and an external hematite scale made of equiaxed grains. 18O tracer experiments performed at 400 C allowed to propose a growth mechanism of the scale
Thomas Graham Brown (1882–1965): Behind the Scenes at the Cardiff Institute of Physiology
Thomas Graham Brown undertook seminal experiments on the neural control of locomotion between 1910 and 1915. Although elected to the Royal Society in 1927, his locomotion research was largely ignored until the 1960s when it was championed and extended by the distinguished neuroscientist, Anders Lundberg. Puzzlingly, Graham Brown's published research stopped in the 1920s and he became renowned as a mountaineer. In this article, we review his life and multifaceted career, including his active neurological service in WWI. We outline events behind the scenes during his tenure at Cardiff's Institute of Physiology in Wales, UK, including an interview with his technician, Terrence J. Surman, who worked in this institute for over half a century
A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines
Background: The outstanding performance of an elite athlete might be associated with changes in their blood metabolic profile. The aims of this study were to compare the blood metabolic profiles between moderate- and high-power and endurance elite athletes and to identify the potential metabolic pathways underlying these differences. Methods: Metabolic profiling of serum samples from 191 elite athletes from different sports disciplines (121 high- and 70 moderate-endurance athletes, including 44 high- and 144 moderate-power athletes), who participated in national or international sports events and tested negative for doping abuse at anti-doping laboratories, was performed using non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography. Multivariate analysis was conducted using orthogonal partial least squares discriminant analysis. Differences in metabolic levels between high- and moderate-power and endurance sports were assessed by univariate linear models. Results: Out of 743 analyzed metabolites, gamma-glutamyl amino acids were significantly reduced in both high-power and high-endurance athletes compared to moderate counterparts, indicating active glutathione cycle. High-endurance athletes exhibited significant increases in the levels of several sex hormone steroids involved in testosterone and progesterone synthesis, but decreases in diacylglycerols and ecosanoids. High-power athletes had increased levels of phospholipids and xanthine metabolites compared to moderate-power counterparts. Conclusions: This pilot data provides evidence that high-power and high-endurance athletes exhibit a distinct metabolic profile that reflects steroid biosynthesis, fatty acid metabolism, oxidative stress, and energy-related metabolites. Replication studies are warranted to confirm differences in the metabolic profiles associated with athletes’ elite performance in independent data sets, aiming ultimately for deeper understanding of the underlying biochemical processes that could be utilized as biomarkers with potential therapeutic implications
Ovarian steroid hormones: what's hot in the stem cell pool?
The vital role of ovarian hormones in the development of the normal breast foreshadowed their importance in mammary stem cell regulation. Two recent papers reveal that 17β-estradiol and progesterone control the size and repopulating ability of the mammary stem cell compartment. This likely occurs via paracrine signaling from steroid receptor-positive luminal cells to steroid receptor-negative stem cells. These findings illuminate roles for the female sex steroids in mobilizing the stem cell pool in the normal breast, and also provide a crucial link between the known hormonal risks of breast cancer and the potential stem cell origin of this disease
Visual Fixations Duration as an Indicator of Skill Level in eSports
Using highly interactive systems like computer games requires a lot of visual
activity and eye movements. Eye movements are best characterized by visual
fixation - periods of time when the eyes stay relatively still over an object.
We analyzed the distributions of fixation duration of professional athletes,
amateur and newbie players. We show that the analysis of fixation durations can
be used to deduce the skill level in computer game players. Highly skilled
gaming performance is characterized by more variability in fixation durations
and by bimodal fixation duration distributions suggesting the presence of two
fixation types in high skill gamers. These fixation types were identified as
ambient (automatic spatial processing) and focal (conscious visual processing).
The analysis of computer gamers' skill level via the analysis of fixation
durations may be used in developing adaptive interfaces and in interface
design.Comment: 10 pages, 3 figure
Mortality and respiratory support in X-linked myotubular myopathy: a RECENSUS retrospective analysis
PURPOSE: Individuals with X-linked myotubular myopathy (XLMTM) who survive infancy require extensive supportive care, including ventilator assistance, wheelchairs and feeding tubes. Half die before 18 months of age. We explored respiratory support and associated mortality risk in RECENSUS, particularly among patients ≤5 years old who received respiratory support at birth; this subgroup closely matches patients in the ASPIRO trial of gene therapy for XLMTM. // DESIGN: RECENSUS is an international, retrospective study of patients with XLMTM. Descriptive and time-to-event analyses examined survival on the basis of age, respiratory support, tracheostomy use, predicted mutational effects and life-sustaining care. // RESULTS: Outcomes for 145 patients were evaluated. Among 126 patients with respiratory support at birth, mortality was 47% overall and 59% among those ≤5 years old. Median survival time was shorter for patients ≤5 years old than for those >5 years old (2.2 years (IQR 0.7-5.6) vs 30.2 years (IQR 19.4-30.2)). The most common cause of death was respiratory failure (66.7%). Median survival time was longer for patients with a tracheostomy than for those without (22.8 years (IQR 8.7-30.2) vs 1.8 years (IQR 0.2-not estimable)). The proportion of patients living without a tracheostomy was 50% at age 6 months and 28% at age 2 years. Median survival time was longer with provision of life-sustaining care than without (19.4 years (IQR 3.1-not estimable) vs 0.2 years (IQR 0.1-2.1)). CONCLUSIONS: High mortality, principally due to respiratory failure, among patients with XLMTM ≤5 years old despite respiratory support underscores the need for early diagnosis, informed decision-making and disease-modifying therapies
- …