6,745 research outputs found

    Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis

    Get PDF
    Meiosis is unique to germ cells and essential for reproduction. During the first meiotic division, homologous chromosomes pair, recombine, and form chiasmata. The homologues connect via axial elements and numerous transverse filaments to form the synaptonemal complex. The synaptonemal complex is a critical component for chromosome pairing, segregation, and recombination. We previously identified a novel germ cell-specific HORMA domain encoding gene, Hormad1, a member of the synaptonemal complex and a mammalian counterpart to the yeast meiotic HORMA domain protein Hop1. Hormad1 is essential for mammalian gametogenesis as knockout male and female mice are infertile. Hormad1 deficient (Hormad1-/-) testes exhibit meiotic arrest in the early pachytene stage, and synaptonemal complexes cannot be visualized by electron microscopy. Hormad1 deficiency does not affect localization of other synaptonemal complex proteins, SYCP2 and SYCP3, but disrupts homologous chromosome pairing. Double stranded break formation and early recombination events are disrupted in Hormad1-/- testes and ovaries as shown by the drastic decrease in the γH2AX, DMC1, RAD51, and RPA foci. HORMAD1 co-localizes with cH2AX to the sex body during pachytene. BRCA1, ATR, and γH2AX co-localize to the sex body and participate in meiotic sex chromosome inactivation and transcriptional silencing. Hormad1 deficiency abolishes γH2AX, ATR, and BRCA1 localization to the sex chromosomes and causes transcriptional de-repression on the X chromosome. Unlike testes, Hormad1-/- ovaries have seemingly normal ovarian folliculogenesis after puberty. However, embryos generated from Hormad1-/- oocytes are hyper- and hypodiploid at the 2 cell and 8 cell stage, and they arrest at the blastocyst stage. HORMAD1 is therefore a critical component of the synaptonemal complex that affects synapsis, recombination, and meiotic sex chromosome inactivation and transcriptional silencing. © 2010 Shin et al

    Cationic microbubbles for non-selective binding of cavitation nuclei to bacterial biofilms

    Get PDF
    The presence of multi-drug resistant biofilms in chronic, persistent infections is a major barrier to successful clinical outcomes of therapy. The production of an extracellular matrix is a characteristic of the biofilm phenotype, intrinsically linked to antimicrobial tolerance. The heterogeneity of the extracellular matrix makes it highly dynamic, with substantial differences in composition between biofilms, even in the same species. This variability poses a major challenge in targeting drug delivery systems to biofilms, as there are few elements both suitably conserved and widely expressed across multiple species. However, the presence of extracellular DNA within the extracellular matrix is ubiquitous across species, which alongside bacterial cell components, gives the biofilm its net negative charge. This research aims to develop a means of targeting biofilms to enhance drug delivery by developing a cationic gas-filled microbubble that non-selectively targets the negatively charged biofilm. Cationic and uncharged microbubbles loaded with different gases were formulated and tested to determine their stability, ability to bind to negatively charged artificial substrates, binding strength, and, subsequently, their ability to adhere to biofilms. It was shown that compared to their uncharged counterparts, cationic microbubbles facilitated a significant increase in the number of microbubbles that could both bind and sustain their interaction with biofilms. This work is the first to demonstrate the utility of charged microbubbles for the non-selective targeting of bacterial biofilms, which could be used to significantly enhance stimuli-mediated drug delivery to the bacterial biofilm

    Crucial role of protein oligomerization in the pathogenesis of Alzheimer's and Parkinson's diseases

    Get PDF
    Misfolding and aggregation of the proteins amyloid-β (Aβ), tau and alpha-synuclein (α-syn) is the predominant pathology underlying the neurodegenerative disorders, Alzheimer's and Parkinson's disease. Whilst end stage insoluble products of aggregation have been well characterised in human and animal models of disease, accumulating evidence from biophysical, cellular and in vivo studies has shown that soluble intermediates of aggregation, or oligomers, may be the key species that mediate toxicity and underlie seeding and spreading in disease. Here we review the process of protein misfolding, and the intrinsic and extrinsic processes that cause the native states of the key aggregating proteins to undergo conformational change to form oligomers and ultimately fibrils. We discuss the structural features of the key toxic intermediate, and describe the putative mechanisms by which oligomers may cause cell toxicity. Finally we explore the potential therapeutic approaches raised by the oligomer hypothesis in neurodegenerative disease. This article is protected by copyright. All rights reserved

    Integrated mRNA and microRNA transcriptome sequencing characterizes sequence variants and mRNA – microRNA regulatory network in nasopharyngeal carcinoma model systems

    Get PDF
    Nasopharyngeal carcinoma (NPC) is a prevalent malignancy in Southeast Asia among the Chinese population. Aberrant regulation of transcripts has been implicated in many types of cancers including NPC. Herein, we characterized mRNA and miRNA transcriptomes by RNA sequencing (RNASeq) of NPC model systems. Matched total mRNA and small RNA of undifferentiated Epstein-Barr virus (EBV)-positive NPC xenograft X666 and its derived cell line C666, well-differentiated NPC cell line HK1, and the immortalized nasopharyngeal epithelial cell line NP460 were sequenced by Solexa technology. We found 2812 genes and 149 miRNAs (human and EBV) to be differentially expressed in NP460, HK1, C666 and X666 with RNASeq; 533 miRNA-mRNA target pairs were inversely regulated in the three NPC cell lines compared to NP460. Integrated mRNA/miRNA expression profiling and pathway analysis show extracellular matrix organization, Beta-1 integrin cell surface interactions, and the PI3K/AKT, EGFR, ErbB, and Wnt pathways were potentially deregulated in NPC. Real-time quantitative PCR was performed on selected mRNA/miRNAs in order to validate their expression. Transcript sequence variants such as short insertions and deletions (INDEL), single nucleotide variant (SNV), and isomiRs were characterized in the NPC model systems. A novel TP53 transcript variant was identified in NP460, HK1, and C666. Detection of three previously reported novel EBV-encoded BART miRNAs and their isomiRs were also observed. Meta-analysis of a model system to a clinical system aids the choice of different cell lines in NPC studies. This comprehensive characterization of mRNA and miRNA transcriptomes in NPC cell lines and the xenograft provides insights on miRNA regulation of mRNA and valuable resources on transcript variation and regulation in NPC, which are potentially useful for mechanistic and preclinical studies. © 2014 The Authors.published_or_final_versio

    Inhibition of class I histone deacetylases by romidepsin potently induces Epstein-Barr virus lytic cycle and mediates enhanced cell death with ganciclovir

    Get PDF
    Pan-histone deacetylase (HDAC) inhibitors, which inhibit 11 HDAC isoforms, are widely used to induce Epstein-Barr virus (EBV) lytic cycle in EBV-associated cancers in vitro and in clinical trials. Here, we hypothesized that inhibition of one or several specific HDAC isoforms by selective HDAC inhibitors could potently induce EBV lytic cycle in EBV-associated malignancies such as nasopharyngeal carcinoma (NPC) and gastric carcinoma (GC). We found that inhibition of class I HDACs, particularly HDAC-1, -2 and -3, was sufficient to induce EBV lytic cycle in NPC and GC cells in vitro and in vivo. Among a panel of selective HDAC inhibitors, the FDA-approved HDAC inhibitor romidepsin was found to be the most potent lytic inducer, which could activate EBV lytic cycle at ∼0.5 to 5 nM (versus ∼800 nM achievable concentration in patients' plasma) in more than 75% of cells. Upregulation of p21WAF1 , which is negatively regulated by class I HDACs, was observed before the induction of EBV lytic cycle. The upregulation of p21WAF1 and induction of lytic cycle were abrogated by a specific inhibitor of PKC-δ but not the inhibitors of PI3K, MEK, p38 MAPK, JNK or ATM pathways. Interestingly, inhibition of HDAC-1, -2 and -3 by romidepsin or shRNA knockdown could confer susceptibility of EBV-positive epithelial cells to the treatment with ganciclovir (GCV). In conclusion, we demonstrated that inhibition of class I HDACs by romidepsin could potently induce EBV lytic cycle and mediate enhanced cell death with GCV, suggesting potential application of romidepsin for the treatment of EBV-associated cancers.postprin

    Comparative evaluation of a point-of-care immunochromatographic test SNAP 4Dx with molecular detection tests for vector-borne canine pathogens in Hong Kong

    Get PDF
    There are no comprehensive studies on the performance of commonly used point-of-care diagnostic enzyme immunoassay for common arthropod-borne canine pathogens. A comparative evaluation of an immunochromatographic test for these infections with a comprehensive polymerase chain reaction (PCR) test panel was performed on 100 pet dogs and 100 stray dogs without obvious clinical symptoms. Of the 162 positive test results from both immunochromatographic test and PCR, there was 85.2% concordance. The 24 discordant results between serology and PCR occurred in tests involving Ehrlichia canis (14) and Anaplasma platys (10), which may be related to the time of infection. No positive cases of borreliosis or rickettsiosis were detected. One important limitation of the immunochromatographic test was its lack of testing for babesiosis and hepatozoonosis. The former is the most prevalent arthropod-borne canine infection in our cohort (41%). Coinfections were found in 19% stray dogs and 6% of pet dogs with both tests (p<0.01). Seventeen and 8 samples from stray and pet dogs, respectively, were initially positive in the PCR test for Ehrlichia. However, on sequencing of the PCR amplicon, 10 from stray and 2 from pet dogs were found to be Wolbachia sequences instead, with 100% nucleotide identity to the 16S rRNA sequence of Wolbachia endosymbiont of Dirofilaria immitis. The presence of Wolbachia DNAemia (6%) correlated well with the molecular test and immunochromatographic antigen test for D. immitis. © Copyright 2011, Mary Ann Liebert, Inc.published_or_final_versio

    Mean-Payoff Optimization in Continuous-Time Markov Chains with Parametric Alarms

    Full text link
    Continuous-time Markov chains with alarms (ACTMCs) allow for alarm events that can be non-exponentially distributed. Within parametric ACTMCs, the parameters of alarm-event distributions are not given explicitly and can be subject of parameter synthesis. An algorithm solving the ε\varepsilon-optimal parameter synthesis problem for parametric ACTMCs with long-run average optimization objectives is presented. Our approach is based on reduction of the problem to finding long-run average optimal strategies in semi-Markov decision processes (semi-MDPs) and sufficient discretization of parameter (i.e., action) space. Since the set of actions in the discretized semi-MDP can be very large, a straightforward approach based on explicit action-space construction fails to solve even simple instances of the problem. The presented algorithm uses an enhanced policy iteration on symbolic representations of the action space. The soundness of the algorithm is established for parametric ACTMCs with alarm-event distributions satisfying four mild assumptions that are shown to hold for uniform, Dirac and Weibull distributions in particular, but are satisfied for many other distributions as well. An experimental implementation shows that the symbolic technique substantially improves the efficiency of the synthesis algorithm and allows to solve instances of realistic size.Comment: This article is a full version of a paper accepted to the Conference on Quantitative Evaluation of SysTems (QEST) 201

    Natural Supersymmetry at the LHC

    Full text link
    If the minimal supersymmetric standard model is the solution to the hierarchy problem, the scalar top quark (stop) and the Higgsino should weigh around the electroweak scale such as 200 GeV. A low messenger scale, which results in a light gravitino, is also suggested to suppress the quantum corrections to the Higgs mass parameters. Therefore the minimal model for natural supersymmetry is a system with stop/Higgsino/gravitino whereas other superparticles are heavy. We study the LHC signatures of the minimal system and discuss the discovery potential and methods for the mass measurements.Comment: 19 pages, 6 figures, 1 tabl

    Measurements of neutral vector resonance in Higgsless models at the LHC

    Full text link
    In Higgsless models, new vector resonances appear to restore the unitarity of the W_L W_L scattering amplitude without the Higgs boson. In the ideal delocalized three site Higgsless model, one of large prodcution cross section of the neutral vector resonance (Z') at the Large Hadron Collider is the W-associated production, pp \to Z'W \to WWW. Although the dileptonic decay channnel, l\nu l'\nu 'jj, is experimentally clean to search for the Z' signals, it is difficult to reconstruct the Z' invariant mass due to the two neutrinos in the final state. We study collider signatures of Z' using the M_{T2}-Assisted On-Shell (MAOS) reconstruction of the missing neutrino momenta. We show the prospect of the Z' mass determination in the channel, l\nu l'\nu 'jj, at the Large Hadron Collider.Comment: 16 pages, 6 figures, 5 tables; v2: references added, minor corrections, version published in JHE
    corecore