7,832 research outputs found
Implementation of real-time parallel processing in a motion control system
The paper proposes an architecture and implementation of a motion control system, with a master-slave multiprocessor mode. Some major problems which must be considered in multiprocessor systems design, including multiprocessor system architecture, interconnection network, hardware circuit design and software design are studied.published_or_final_versio
Dynamic Set Intersection
Consider the problem of maintaining a family of dynamic sets subject to
insertions, deletions, and set-intersection reporting queries: given , report every member of in any order. We show that in the word
RAM model, where is the word size, given a cap on the maximum size of
any set, we can support set intersection queries in
expected time, and updates in expected time. Using this algorithm
we can list all triangles of a graph in
expected time, where and
is the arboricity of . This improves a 30-year old triangle enumeration
algorithm of Chiba and Nishizeki running in time.
We provide an incremental data structure on that supports intersection
{\em witness} queries, where we only need to find {\em one} .
Both queries and insertions take O\paren{\sqrt \frac{N}{w/\log^2 w}} expected
time, where . Finally, we provide time/space tradeoffs for
the fully dynamic set intersection reporting problem. Using words of space,
each update costs expected time, each reporting query
costs expected time where
is the size of the output, and each witness query costs expected time.Comment: Accepted to WADS 201
An Improved Private Mechanism for Small Databases
We study the problem of answering a workload of linear queries ,
on a database of size at most drawn from a universe
under the constraint of (approximate) differential privacy.
Nikolov, Talwar, and Zhang~\cite{NTZ} proposed an efficient mechanism that, for
any given and , answers the queries with average error that is
at most a factor polynomial in and
worse than the best possible. Here we improve on this guarantee and give a
mechanism whose competitiveness ratio is at most polynomial in and
, and has no dependence on . Our mechanism
is based on the projection mechanism of Nikolov, Talwar, and Zhang, but in
place of an ad-hoc noise distribution, we use a distribution which is in a
sense optimal for the projection mechanism, and analyze it using convex duality
and the restricted invertibility principle.Comment: To appear in ICALP 2015, Track
Differentiation of Human Embryonic Stem Cells into Cells with Corneal Keratocyte Phenotype
Corneal transparency depends on a unique extracellular matrix secreted by stromal keratocytes, mesenchymal cells of neural crest lineage. Derivation of keratocytes from human embryonic stem (hES) cells could elucidate the keratocyte developmental pathway and open a potential for cell-based therapy for corneal blindness. This study seeks to identify conditions inducing differentiation of pluripotent hES cells to the keratocyte lineage. Neural differentiation of hES cell line WA01(H1) was induced by co-culture with mouse PA6 fibroblasts. After 6 days of co-culture, hES cells expressing cell-surface NGFR protein (CD271, p75NTR) were isolated by immunoaffinity adsorption, and cultured as a monolayer for one week. Keratocyte phenotype was induced by substratum-independent pellet culture in serum-free medium containing ascorbate. Gene expression, examined by quantitative RT-PCR, found hES cells co-cultured with PA6 cells for 6 days to upregulate expression of neural crest genes including NGFR, SNAI1, NTRK3, SOX9, and MSX1. Isolated NGFR-expressing cells were free of PA6 feeder cells. After expansion as a monolayer, mRNAs typifying adult stromal stem cells were detected, including BMI1, KIT, NES, NOTCH1, and SIX2. When these cells were cultured as substratum-free pellets keratocyte markers AQP1, B3GNT7, PTDGS, and ALDH3A1 were upregulated. mRNA for keratocan (KERA), a cornea-specific proteoglycan, was upregulated more than 10,000 fold. Culture medium from pellets contained high molecular weight keratocan modified with keratan sulfate, a unique molecular component of corneal stroma. These results show hES cells can be induced to differentiate into keratocytes in vitro. Pluripotent stem cells, therefore, may provide a renewable source of material for development of treatment of corneal stromal opacities. © 2013 Chan et al
Recommended from our members
An interpenetrating network composite for a regenerative spinal disc application
Severe degeneration of the intervertebral disc has an immensely debilitating effect on quality of life that has become a serious health and economic burden throughout the world. The disc plays an integral role in biomechanical movement and support within the spine. The emergence of tissue engineering endeavours to restore the structural characteristics and functionality of the native tissue. Hydrogels have been widely investigated as a candidate for regeneration of the gelatinous nucleus pulposus due to its architectural resemblance and fluid retention characteristics. However, hydrogels are often limited due to small compressive stiffness and tear resistance, leading to extrusion complications. Reinforcement of the hydrogel network using polymeric scaffolds may address these issues of inadequate mechanical properties and implant instability. This study investigates the potential of a carrageenan gel-infused polycaprolactone scaffold for nucleus pulposus tissue engineering. Mechanical properties were characterised using viscoelastic and poroelastic frameworks via microindentation. The incorporation of polymeric reinforcement within the gels increased material stiffness to that comparable to the native nucleus pulposus, however permeability was significantly greater than native values. A preliminary cell evaluation culturing NIH 3T3s over 21 days suggested the incorporation of polymeric networks also enhanced cellular proliferation compared to gels alone
Confidence-interval construction for rate ratio in matched-pair studies with incomplete data
Matched-pair design is often used in clinical trials to increase the efficiency of establishing equivalence between two treatments with binary outcomes. In this article, we consider such a design based on rate ratio in the presence of incomplete data. The rate ratio is one of the most frequently used indices in comparing efficiency of two treatments in clinical trials. In this article, we propose 10 confidence-interval estimators for the rate ratio in incomplete matched-pair designs. A hybrid method that recovers variance estimates required for the rate ratio from the confidence limits for single proportions is proposed. It is noteworthy that confidence intervals based on this hybrid method have closed-form solution. The performance of the proposed confidence intervals is evaluated with respect to their exact coverage probability, expected confidence interval width, and distal and mesial noncoverage probability. The results show that the hybrid Agresti–Coull confidence interval based on Fieller’s theorem performs satisfactorily for small to moderate sample sizes. Two real examples from clinical trials are used to illustrate the proposed confidence intervals.postprin
Permanent magnet brushless drives
The purpose of this paper is to present an optimal efficiency control scheme for constant power operation of phase decoupling (PD) PM brushless DC motor drives. The key is to adaptively adjust the advanced conduction angle to minimize the system losses for a given operation point in the constant power region. The strategy for constant power operation of PD PM brushless DC motor drives is exemplified using a 5-phase 22-pole PD PM brushless DC motor. In the sections that follow, the newly-developed optimal efficiency control technique is then illustrated. Then, after describing the corresponding implementation, both computer simulation and experimental results are presented, and some conclusions are offered.published_or_final_versio
Optimal-efficiency control for constant-power operation of phase-decoupling permanent-magnet brushless motor drives
In this paper, a control approach to optimize the system efficiency of phase-decoupling (PD) permanent-magnet (PM) brushless motor drives during constant-power operation is presented. The approach is to adaptively adjust the advanced conduction angle to minimize the total system losses for a given operation point in the constant-power region. The corresponding minimum total losses are determined by minimizing the input current for a fixed voltage source. Both computer simulation and experimental results are given for illustration.published_or_final_versio
Human oropharynx as natural reservoir of Streptobacillus hongkongensis
published_or_final_versio
Nonlinear dynamics of voices in esophageal phonation
The present study investigated the difference in voice perturbation measures and parameters obtained from nonlinear dynamic analysis between normal laryngeal phonation and standard esophageal (SE) phonation. Jitter, shimmer, correlation dimension and Kolmogorov entropy were measured from 10 SE and 10 normal male speakers of Cantonese. Jitter and shimmer values were significantly higher for SE than laryngeal voice. But jitter values were found to be significantly different when length of sound samples was altered. In addition, both correlation dimension and Kolmogorov entropy values were significantly higher for SE than laryngeal voice and sample length did not appear to affect the result. These results suggest that SE voices are more chaotic than laryngeal voice. It follows that the technique of nonlinear dynamic analysis may be more reliable and stable for evaluating the acoustic characteristics of SE voices. © 2011 IEEE.published_or_final_versio
- …