50 research outputs found

    Endometrial cells sense and react to tissue damage during infection of the bovine endometrium via interleukin 1

    Get PDF
    Cells generate inflammatory responses to bacteria when pattern recognition receptors bind pathogen-associated molecules such as lipopolysaccharide. Cells may also respond to tissue damage by sensing damage-associated molecules. Postpartum bacterial infections of the bovine uterus cause endometritis but the risk of disease is increased by tissue trauma triggered by dystocia. Animals that suffered dystocia had increased concentrations of inflammatory mediators IL-8, IL-1β and IL-1α in vaginal mucus 3 weeks postpartum, but they also had more bacteria than normal animals. Ex vivo organ cultures of endometrium, endometrial cells and peripheral blood monocytes did not generate inflammatory responses to prototypical damage molecules, HMGB1 or hyaluronan, or to necrotic cells; although they secreted IL-6 and IL-8 in a concentration-dependent manner when treated with IL-1α. However, necrotic endometrial cells did not accumulate intracellular IL-1α or release IL-1α, except when pre-treated with lipopolysaccharide or bacteria. Endometrial cell inflammatory responses to IL-1α were dependent on the cognate receptor IL-1R1, and the receptor adaptor protein MyD88, and the inflammatory response to IL-1α was independent of the response to lipopolysaccharide. Rather than a typical damage-associated molecule, IL-1α acts to scale the inflammatory response in recognition that there is a combination of pathogen challenge followed by endometrial cell damage

    Inhibiting mevalonate pathway enzymes increases stromal cell resilience to a cholesterol-dependent cytolysin

    Get PDF
    Animal health depends on the ability of immune cells to kill invading pathogens, and on the resilience of tissues to tolerate the presence of pathogens. Trueperella pyogenes causes tissue pathology in many mammals by secreting a cholesterol-dependent cytolysin, pyolysin (PLO), which targets stromal cells. Cellular cholesterol is derived from squalene, which is synthesized via the mevalonate pathway enzymes, including HMGCR, FDPS and FDFT1. The present study tested the hypothesis that inhibiting enzymes in the mevalonate pathway to reduce cellular cholesterol increases the resilience of stromal cells to PLO. We first verified that depleting cellular cholesterol with methyl-β-cyclodextrin increased the resilience of stromal cells to PLO. We then used siRNA to deplete mevalonate pathway enzyme gene expression, and used pharmaceutical inhibitors, atorvastatin, alendronate or zaragozic acid to inhibit the activity of HMGCR, FDPS and FDFT1, respectively. These approaches successfully reduced cellular cholesterol abundance, but mevalonate pathway enzymes did not affect cellular resilience equally. Inhibiting FDFT1 was most effective, with zaragozic acid reducing the impact of PLO on cell viability. The present study provides evidence that inhibiting FDFT1 increases stromal cell resilience to a cholesterol-dependent cytolysin

    Negatively-stained polysomes on rough microsome vesicles viewed by electron microscopy: further evidence regarding the orientation of attached ribosomes

    Full text link
    Rough microsomes, derived from rough endoplasmic reticulum of rat liver, were studied by electron microscopy after negative staining, to seek further information about the orientation of ribosomal small and large subunits in bound polysomes. Rough microsomal vesicles were fixed with 2% formaldehyde, centrifuged onto electron-microscopic grid membranes, and were then negatively-stained with 2% phosphotungstic acid. In these preparations, viewed with the electron microscope, flattened rough microsomal vesicles with bound polysomes were sometimes discernible, and the individual ribosomes in the polysomes occasionally showed small and large subunits. The small subunits were uniformly oriented toward the inside of the polysomal curve. The large and small subunits appeared to be alongside one another on the membrane, consistent with the orientation that has been described by Unwin and his co-workers. The boundary between the small and large subunits occurred at approximately the same level in the ribosome where inter-ribosomal strands have been described previously in surface views of bound polysomes in positively-stained electron-microscopic tissue sections. This further confirms the identity of the strands as messenger RNA.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47690/1/441_2004_Article_BF00343942.pd

    Comparative review of human and canine osteosarcoma: morphology, epidemiology, prognosis, treatment and genetics

    Get PDF
    Osteosarcoma (OSA) is a rare cancer in people. However OSA incidence rates in dogs are 27 times higher than in people. Prognosis in both species is poor, with five year osteosarcoma survival rates in people not having improved in decades. For dogs, one year survival rates are only around ~45%. Improved and novel treatment regimens are urgently required to improve survival in both humans and dogs with OSA. Utilising information from genetic studies could assist in this in both species, with the higher incidence rates in dogs contributing to the dog population being a good model of human disease. This review compares the clinical characteristics, gross morphology and histopathology, aetiology, epidemiology, and genetics of canine and human osteosarcoma. Finally, the current position of canine osteosarcoma genetic research is discussed and areas for additional work within the canine population are identified
    corecore