38 research outputs found

    Academic Performance and Behavioral Patterns

    Get PDF
    Identifying the factors that influence academic performance is an essential part of educational research. Previous studies have documented the importance of personality traits, class attendance, and social network structure. Because most of these analyses were based on a single behavioral aspect and/or small sample sizes, there is currently no quantification of the interplay of these factors. Here, we study the academic performance among a cohort of 538 undergraduate students forming a single, densely connected social network. Our work is based on data collected using smartphones, which the students used as their primary phones for two years. The availability of multi-channel data from a single population allows us to directly compare the explanatory power of individual and social characteristics. We find that the most informative indicators of performance are based on social ties and that network indicators result in better model performance than individual characteristics (including both personality and class attendance). We confirm earlier findings that class attendance is the most important predictor among individual characteristics. Finally, our results suggest the presence of strong homophily and/or peer effects among university students

    Subcellular Distribution of Mitochondrial Ribosomal RNA in the Mouse Oocyte and Zygote

    Get PDF
    Mitochondrial ribosomal RNAs (mtrRNAs) have been reported to translocate extra-mitochondrially and localize to the germ cell determinant of oocytes and zygotes in some metazoa except mammals. To address whether the mtrRNAs also localize in the mammals, expression and distribution of mitochondrion-encoded RNAs in the mouse oocytes and zygotes was examined by whole-mount in situ hybridization (ISH). Both 12S and 16S rRNAs were predominantly distributed in the animal hemisphere of the mature oocyte. This distribution pattern was rearranged toward the second polar body in zygotes after fertilization. The amount of mtrRNAs decreased around first cleavage, remained low during second cleavage and increased after third cleavage. Staining intensity of the 12S rRNA was weaker than that of the 16S rRNA throughout the examined stages. Similar distribution dynamics of the 16S rRNA was observed in strontium-activated haploid parthenotes, suggesting the distribution rearrangement does not require a component from sperm. The distribution of 16S rRNAs did not coincide with that of mitochondrion-specific heat shock protein 70, suggesting that the mtrRNA is translocated from mitochondria. The ISH-scanning electron microscopy confirms the extra-mitochondrial mtrRNA in the mouse oocyte. Chloramphenicol (CP) treatment of late pronuclear stage zygotes perturbed first cleavage as judged by the greater than normal disparity in size of blastomeres of 2-cell conceptuses. Two-third of the CP-treated zygotes arrested at either 2-cell or 3-cell stage even after the CP was washed out. These findings indicate that the extra-mitochondrial mtrRNAs are localized in the mouse oocyte and implicated in correct cytoplasmic segregation into blastomeres through cleavages of the zygote

    Mitochondrial Dysfunction and Apoptosis in Cumulus Cells of Type I Diabetic Mice

    Get PDF
    Impaired oocyte quality has been demonstrated in diabetic mice; however, the potential pathways by which maternal diabetes exerts its effects on the oocyte are poorly understood. Cumulus cells are in direct contact with the oocyte via gap junctions and provide essential nutrients to support oocyte development. In this study, we investigated the effects of maternal diabetes on the mitochondrial status in cumulus cells. We found an increased frequency of fragmented mitochondria, a decreased transmembrane potential and an aggregated distribution of mitochondria in cumulus cells from diabetic mice. Furthermore, while mitochondrial biogenesis in cumulus cells was induced by maternal diabetes, their metabolic function was disrupted as evidenced by lower ATP and citrate levels. Moreover, we present evidence suggesting that the mitochondrial impairments induced by maternal diabetes, at least in part, lead to cumulus cell apoptosis through the release of cytochrome c. Together the deleterious effects on cumulus cells may disrupt trophic and signaling interactions with the oocyte, contributing to oocyte incompetence and thus poor pregnancy outcomes in diabetic females
    corecore