32 research outputs found

    The impact of DocosaHexaenoic Acid supplementation during pregnancy and lactation on Neurodevelopment of the offspring in India (DHANI): trial protocol.

    Get PDF
    BACKGROUND: Evidence suggests a strong association between nutrition during the first 1000 days (conception to 2 years of life) and cognitive development. Maternal docosahexaenoic acid (DHA) supplementation has been suggested to be linked with cognitive development of their offspring. DHA is a structural component of human brain and retina, and can be derived from marine algae, fatty fish and marine oils. Since Indian diets are largely devoid of such products, plasma DHA levels are low. We are testing the effect of pre- and post-natal DHA maternal supplementation in India on infant motor and mental development, anthropometry and morbidity patterns. METHODS: DHANI is a double-blinded, parallel group, randomized, placebo controlled trial supplementing 957 pregnant women aged 18-35 years from ≤20 weeks gestation through 6 months postpartum with 400 mg/d algal-derived DHA or placebo. Data on the participant's socio-demographic profile, anthropometric measurements and dietary intake are being recorded at baseline. The mother-infant dyads are followed through age 12 months. The primary outcome variable is infant motor and mental development quotient at 12 months of age evaluated by Development Assessment Scale in Indian Infants (DASII). Secondary outcomes are gestational age, APGAR scores, and infant anthropometry. Biochemical indices (blood and breast-milk) from mother-child dyads are being collected to estimate changes in DHA levels in response to supplementation. All analyses will follow the intent-to-treat principle. Two-sample t test will be used to test unadjusted difference in mean DASII score between placebo and DHA group. Adjusted analyses will be performed using multiple linear regression. DISCUSSION: Implications for maternal and child health and nutrition in India: DHANI is the first large pre- and post-natal maternal dietary supplementation trial in India. If the trial finds substantial benefit, it can serve as a learning to scale up the DHA intervention in the country. TRIAL REGISTRATION: The trial is retrospectively registered at clinicaltrials.gov ( NCT01580345 , NCT03072277 ) and ctri.nic.in ( CTRI/2013/04/003540 , CTRI/2017/08/009296 )

    The selective Cox-2 inhibitor Celecoxib suppresses angiogenesis and growth of secondary bone tumors: An intravital microscopy study in mice

    Get PDF
    BACKGROUND: The inhibition of angiogenesis is a promising strategy for the treatment of malignant primary and secondary tumors in addition to established therapies such as surgery, chemotherapy, and radiation. There is strong experimental evidence in primary tumors that Cyclooxygenase-2 (Cox-2) inhibition is a potent mechanism to reduce angiogenesis. For bone metastases which occur in up to 85% of the most frequent malignant primary tumors, the effects of Cox-2 inhibition on angiogenesis and tumor growth remain still unclear. Therefore, the aim of this study was to investigate the effects of Celecoxib, a selective Cox-2 inhibitor, on angiogenesis, microcirculation and growth of secondary bone tumors. METHODS: In 10 male severe combined immunodeficient (SCID) mice, pieces of A549 lung carcinomas were implanted into a newly developed cranial window preparation where the calvaria serves as the site for orthotopic implantation of the tumors. From day 8 after tumor implantation, five animals (Celecoxib) were treated daily with Celecoxib (30 mg/kg body weight, s.c.), and five animals (Control) with the equivalent amount of the CMC-based vehicle. Angiogenesis, microcirculation, and growth of A549 tumors were analyzed by means of intravital microscopy. Apoptosis was quantified using the TUNEL assay. RESULTS: Treatment with Celecoxib reduced both microvessel density and tumor growth. TUNEL reaction showed an increase in apoptotic cell death of tumor cells after treatment with Celecoxib as compared to Controls. CONCLUSION: Celecoxib is a potent inhibitor of tumor growth of secondary bone tumors in vivo which can be explained by its anti-angiogenic and pro-apoptotic effects. The results indicate that a combination of established therapy regimes with Cox-2 inhibition represents a possible application for the treatment of bone metastases

    On the direct parallel solution of systems of linear equations: New algorithms and systolic structures

    No full text
    The paper presents two new algorithms for the direct parallel solution of systems of linear equations. The algorithms employ a novel recursive doubling technique to obtain solutions to an nth-order system in n steps with no more than 2n(n −1) processors. Comparing their performance with the Gaussian elimination algorithm (GE), we show that they are almost 100% faster than the latter. This speedup is achieved by dispensing with all the computation involved in the back-substitution phase of GE. It is also shown that the new algorithms exhibit error characteristics which are superior to GE. An n(n + 1) systolic array structure is proposed for the implementation of the new algorithms. We show that complete solutions can be obtained, through these single-phase solution methods, in 5n−log2n−4 computational steps, without the need for intermediate I/O operations

    Analysis of parallel algorithms for power flow

    No full text
    Load flow is one of the most frequently called routines in the planning, operation, as well as in the security control of a power system. For the traditional offline single-case solution, algorithmic speed has ceased to be relevant. But such speed is vital for applications in security assessment and real-time applications of system control. The authors present the parallelization of the load flow calculation using a fast decoupled method. The major challenge to this is the parallelization of linearized sets of equations which is the most time-consuming part of the computation. Parallel algorithms have been developed employing different solution techniques and have been run on the MULTIMICRO which is a parallel machine developed in the Department of Electrical Engineering, Indian Institute of Science, Bangalore. Results obtained for a 198 bus system are presente

    Triplet repeat polymorphism & fragile X syndrome in the Indian context

    No full text
    Mental retardation due to fragile X syndrome is one of the genetic disorders caused by tripler repeat expansion, CGG repeat involved in this disease is known to exhibit polymorphism even among normal individuals. Here we describe the development of suitable probes for detection of polymorphism in CGG repeat at FMR1 locus as well as the diagnosis of fragile X syndrome. Using these methods polymorphism at the FMR1 locus has been examined in 161 individuals. Ninety eight patients with unclassified mental retardation were examined, of whom 7 were found to have the expanded (CGG) allele at the FMR1 locus, The hybridization pattern for two patients has been presented as representative data
    corecore