9 research outputs found

    ApoSense: a novel technology for functional molecular imaging of cell death in models of acute renal tubular necrosis

    Get PDF
    Purpose: Acute renal tubular necrosis (ATN), a common cause of acute renal failure, is a dynamic, rapidly evolving clinical condition associated with apoptotic and necrotic tubular cell death. Its early identification is critical, but current detection methods relying upon clinical assessment, such as kidney biopsy and functional assays, are insufficient. We have developed a family of small molecule compounds, ApoSense, that is capable, upon systemic administration, of selectively targeting and accumulating within apoptotic/necrotic cells and is suitable for attachment of different markers for clinical imaging. The purpose of this study was to test the applicability of these molecules as a diagnostic imaging agent for the detection of renal tubular cell injury following renal ischemia. Methods: Using both fluorescent and radiolabeled derivatives of one of the ApoSense compounds, didansyl cystine, we evaluated cell death in three experimental, clinically relevant animal models of ATN: renal ischemia/reperfusion, radiocontrast-induced distal tubular necrosis, and cecal ligature and perforation-induced sepsis. Results: ApoSense showed high sensitivity and specificity in targeting injured renal tubular epithelial cells in vivo in all three models used. Uptake of ApoSense in the ischemic kidney was higher than in the non-ischemic one, and the specificity of ApoSense targeting was demonstrated by its localization to regions of apoptotic/necrotic cell death, detected morphologically and by TUNEL staining. Conclusion: ApoSense technology should have significant clinical utility for real-time, noninvasive detection of renal parenchymal damage of various types and evaluation of its distribution and magnitude; it may facilitate the assessment of efficacy of therapeutic interventions in a broad spectrum of disease states

    Cyclin dependent kinase 5 and its interacting proteins in cell death induced in vivo by cyclophosphamide in developing mouse embryos

    No full text
    Activation or inactivation of members of the cyclin-dependent kinase family is important during cell cycle progression. However, Cdk5, a member of this family that was originally identified because of its high structural homology to Cdc2, is activated during cell differentiation and cell death but not during cell cycle progression. We previously demonstrated a correlation between the up-regulation of Cdk5 protein and kinase activity and cell death during development and pathogenesis. We report here that cyclophosphamide (CP) induces massive apoptotic cell death in mouse embryos and that Cdk5 is expressed in apoptotic cells displaying fragmented DNA. During CP-induced cell death, Cdk5 protein expression is substantially increased as detected by immunohistochemistry but not by Western blot, while its mRNA level remains the same as control, and its kinase activity is markedly elevated. The up-regulation of Cdk5 during CP-induced cell death is not due to de novo protein synthesis. We also examined p35, a regulatory protein of Cdk5 in neuronal differentiation. Using a yeast two-hybrid system, we isolated p35, a neuronal differentiation specific protein, as a protein that interacts with Cdk5 in CP-treated embryos, p35 mRNA level does not change, but the protein expression of p25, a truncated form of p35, is elevated during cell death in vivo, as established here, as well as during cell death in vitro. Our results suggest a role for Cdk5 and its regulatory proteins during CP induced cell death. These results further support the view that Cdk5 and its regulation may be key players in the execution of cell death regardless of how the cell dies, whether through biological mechanisms, disease states such as Alzheimer's disease, or induction by CP

    Management of vesicovaginal fistulas (VVFs) in women following benign gynaecologic surgery: A systematic review and meta-analysis

    No full text

    The Continuing Evolution of Molecular Functional Imaging in Clinical Oncology: The Road to Precision Medicine and Radiogenomics (Part I)

    No full text
    corecore