15 research outputs found

    DNA origami-based single-molecule forcespectroscopy elucidates RNA Polymerase IIIpre-initiation complex stability

    Get PDF
    The TATA-binding protein (TBP) and a transcription factor (TF) IIB-like factor are important constituents of all eukaryotic initiation complexes. The reason for the emergence and strict requirement of the additional initiation factor Bdp1 in the RNA polymerase (RNAP) III system, however, remained elusive. A poorly studied aspect in this context is the effect of DNA strain arising from DNA compaction and transcriptional activity on initiation complex formation. We made use of a DNA origami-based force clamp to follow the assembly of human initiation complexes in the RNAP II and RNAP III systems at the single-molecule level under piconewton forces. We demonstrate that TBP-DNA complexes are force-sensitive and TFIIB is sufficient to stabilise TBP on a strained promoter. In contrast, Bdp1 is the pivotal component that ensures stable anchoring of initiation factors, and thus the polymerase itself, in the RNAP III system. Thereby, we offer an explanation for the crucial role of Bdp1 for the high transcriptional output of RNAP III

    Human immunodeficiency virus type 1 neutralizing antibody serotyping using serum pools and an infectivity reduction assay

    No full text
    Classification of human immunodeficiency virus type 1 (HIV-1) by neutralization serotype may be important for the design of active and passive immunization strategies. Neutralizing antibody serotyping is hindered by the lack of standard reagents and assay format, and by the weak activity of many individual sera. To facilitate cross-clade neutralization analysis, we used an infectivity reduction assay (IRA) and selected clade-specific serum (or plasma) pools from subjects infected with clade B and E HIV-1, respectively. Several serum pools were utilized; some were selected for strong neutralizing activity against intraclade viruses and others were derived from conveniently available samples. Against a panel of 51 clade B and E viruses, serum pools displayed strong neutralization of most intraclade viruses and significantly diminished cross-clade neutralization. Results were confirmed against a blinded panel of 20 viruses. The data indicate that the phylogenetic classification of virus subtypes B and E corresponds to two distinct neutralization serotypes. This approach to neutralizing antibody serotyping may be useful in defining the antigenic relationship among viruses from other clades

    Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus.

    No full text
    Current human immunodeficiency virus-1 (HIV-1) vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in approximately 20% of HIV-1-infected individuals, and details of their generation could provide a blueprint for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from the time of infection. The mature antibody, CH103, neutralized approximately 55% of HIV-1 isolates, and its co-crystal structure with the HIV-1 envelope protein gp120 revealed a new loop-based mechanism of CD4-binding-site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the unmutated common ancestor of the CH103 lineage avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data determine the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies, and provide insights into strategies to elicit similar antibodies by vaccination
    corecore