39 research outputs found

    Tracking research trends and hotspots in sperm DNA fragmentation testing for the evaluation of male infertility: a scientometric analysis.

    Get PDF
    BACKGROUND: This article describes the research trends in sperm DNA fragmentation (SDF) over the past 20 years (1999-2018) using a scientometric approach. METHODS: A stepwise approach was adopted to retrieve scientometric data (articles per year, authors, affiliations, journals, countries) from Scopus and analyze the publication pattern of SDF with reference to key areas of research in the field of Andrology. RESULTS: A total of 2121 articles were retrieved related to SDF. Our data revealed an increasing research trend in SDF (n = 33 to n = 173) over the past 20 years (R2 = 0.894). Most productive country in publications was the USA (n = 450), while Agarwal A. (n = 129) being the most productive author. Most of the articles in SDF were primarily focused on lifestyle (n = 157), asthenozoospermia (n = 135) and varicocele (130). Mechanistic studies on SDF were published twice as much as prognostic/diagnostic studies, with significant emphasis on oxidative stress. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was the most widely used technique to evaluate SDF. Publications on SDF related to assisted reproductive techniques also showed a linear increasing trend (R2 = 0.933). CONCLUSIONS: Our analysis revealed an increasing trend in SDF publications predominantly investigating lifestyle, asthenozoospermia and varicocele conditions with TUNEL being the most widely used technique. A substantial increase in research is warranted to establish SDF as prognostic/diagnostic parameter to evaluate clinical scenarios and ART outcomes

    Zebrafish ProVEGF-C Expression, Proteolytic Processing and Inhibitory Effect of Unprocessed ProVEGF-C during Fin Regeneration

    Get PDF
    BACKGROUND: In zebrafish, vascular endothelial growth factor-C precursor (proVEGF-C) processing occurs within the dibasic motif HSIIRR(214) suggesting the involvement of one or more basic amino acid-specific proprotein convertases (PCs) in this process. In the present study, we examined zebrafish proVEGF-C expression and processing and the effect of unprocessed proVEGF-C on caudal fin regeneration. METHODOLOGY/PRINCIPAL FINDINGS: Cell transfection assays revealed that the cleavage of proVEGF-C, mainly mediated by the proprotein convertases Furin and PC5 and to a less degree by PACE4 and PC7, is abolished by PCs inhibitors or by mutation of its cleavage site (HSIIRR(214) into HSIISS(214)). In vitro, unprocessed proVEGF-C failed to activate its signaling proteins Akt and ERK and to induce cell proliferation. In vivo, following caudal fin amputation, the induction of VEGF-C, Furin and PC5 expression occurs as early as 2 days post-amputation (dpa) with a maximum levels at 4-7 dpa. Using immunofluorescence staining we localized high expression of VEGF-C and the convertases Furin and PC5 surrounding the apical growth zone of the regenerating fin. While expression of wild-type proVEGF-C in this area had no effect, unprocessed proVEGF-C inhibited fin regeneration. CONCLUSIONS/SIGNIFICANCES: Taken together, these data indicate that zebrafish fin regeneration is associated with up-regulation of VEGF-C and the convertases Furin and PC5 and highlight the inhibitory effect of unprocessed proVEGF-C on fin regeneration

    A Chemical Screen to Identify Novel Inhibitors of Fin Regeneration in Zebrafish

    No full text
    We performed a chemical screen to look for novel inhibitors of zebrafish caudal fin regeneration. In a pilot screen, 520 compounds were tested. Two compounds, budesonide and AGN192403, abrogated fin regeneration. One compound in particular, AGN192403, targets the imidazoline receptor, a pathway not previously linked to fin regeneration. In addition to inhibiting regeneration of the adult fin, AGN192403 also blocked regeneration of the larval fin fold. Finally, the inhibitory effect of AGN192403 on fin regeneration persisted after removal of the drug. These studies demonstrate that chemical screening is feasible in adult zebrafish and that it is a reasonable strategy to use for exploring the biology of regeneration
    corecore