52 research outputs found

    Functional Dichotomy between NKG2D and CD28-Mediated Co-Stimulation in Human CD8+ T Cells

    Get PDF
    Both CD28 and NKG2D can function as co-stimulatory receptors in human CD8+ T cells. However, their independent functional contributions in distinct CD8+ T cell subsets are not well understood. In this study, CD8+ T cells in human peripheral blood- and lung-derived lymphocytes were analyzed for CD28 and NKG2D expression and function. We found a higher level of CD28 expression in PBMC-derived naΓ―ve (CD45RA+CD27+) and memory (CD45RAβˆ’CD27+) CD8+ T cells (CD28Hi), while its expression was significantly lower in effector (CD45RA+CD27βˆ’) CD8+ T cells (CD28Lo). Irrespective of the differences in the CD28 levels, NKG2D expression was comparable in all three CD8+ T cell subsets. CD28 and NKG2D expressions followed similar patterns in human lung-resident GILGFVFTL/HLA-A2-pentamer positive CD8+ T cells. Co-stimulation of CD28Lo effector T cells via NKG2D significantly increased IFN-Ξ³ and TNF-Ξ± levels. On the contrary, irrespective of its comparable levels, NKG2D-mediated co-stimulation failed to augment IFN-Ξ³ and TNF-Ξ± production in CD28Hi naΓ―ve/memory T cells. Additionally, CD28-mediated co-stimulation was obligatory for IL-2 generation and thereby its production was limited only to the CD28Hi naΓ―ve/memory subsets. MICA, a ligand for NKG2D was abundantly expressed in the tracheal epithelial cells, validating the use of NKG2D as the major co-stimulatory receptor by tissue-resident CD8+ effector T cells. Based on these findings, we conclude that NKG2D may provide an expanded level of co-stimulation to tissue-residing effector CD8+ T cells. Thus, incorporation of co-stimulation via NKG2D in addition to CD28 is essential to activate tumor or tissue-infiltrating effector CD8+ T cells. However, boosting a recall immune response via memory CD8+ T cells or vaccination to stimulate naΓ―ve CD8+ T cells would require CD28-mediated co-stimulation

    Modified Vaccinia Virus Ankara Exerts Potent Immune Modulatory Activities in a Murine Model

    Get PDF
    Background: Modified vaccinia virus Ankara (MVA), a highly attenuated strain of vaccinia virus, has been used as vaccine delivery vector in preclinical and clinical studies against infectious diseases and malignancies. Here, we investigated whether an MVA which does not encode any antigen (Ag) could be exploited as adjuvant per se. Methodology/Principal Findings: We showed that dendritic cells infected in vitro with non-recombinant (nr) MVA expressed maturation and activation markers and were able to efficiently present exogenously pulsed Ag to T cells. In contrast to the dominant T helper (Th) 1 biased responses elicited against Ags produced by recombinant MVA vectors, the use of nrMVA as adjuvant for the co-administered soluble Ags resulted in a long lasting mixed Th1/Th2 responses. Conclusions/Significance: These findings open new ways to potentiate and modulate the immune responses to vaccin

    Interferon-Ξ² Pretreatment of Conventional and Plasmacytoid Human Dendritic Cells Enhances Their Activation by Influenza Virus

    Get PDF
    Influenza virus produces a protein, NS1, that inhibits infected cells from releasing type I interferon (IFN) and blocks maturation of conventional dendritic cells (DCs). As a result, influenza virus is a poor activator of both mouse and human DCs in vitro. However, in vivo a strong immune response to virus infection is generated in both species, suggesting that other factors may contribute to the maturation of DCs in vivo. It is likely that the environment in which a DC encounters a virus would contain multiple pro-inflammatory molecules, including type I IFN. Type I IFN is a critical component of the viral immune response that initiates an antiviral state in cells, primarily by triggering a broad transcriptional program that interferes with the ability of virus to establish infection in the cell. In this study, we have examined the activation profiles of both conventional and plasmacytoid dendritic cells (cDCs and pDCs) in response to an influenza virus infection in the context of a type I IFN-containing environment. We found that both cDCs and pDCs demonstrate a greater activation response to influenza virus when pre-exposed to IFN-Ξ² (IFN priming); although, the priming kinetics are different in these two cell types. This strongly suggests that type I IFN functions not only to reduce viral replication in these immune cells, but also to promote greater DC activation during influenza virus infections

    Insulin gene VNTR genotype associates with frequency and phenotype of the autoimmune response to proinsulin

    Get PDF
    Immune responses to autoantigens are in part controlled by deletion of autoreactive cells through genetically regulated selection mechanisms. We have directly analyzed peripheral CD4+ proinsulin (PI) 76–90 (SLQPLALEGSLQKRG)-specific T cells using soluble fluorescent major histocompatibility complex class II tetramers. Subjects with type I diabetes and healthy controls with high levels of peripheral proinsulin-specific T cells were characterized by the presence of a disease-susceptible polymorphism in the insulin variable number of tandem repeats (INS-VNTR) gene. Conversely, subjects with a β€˜protective' polymorphism in the INS-VNTR gene had nearly undetectable levels of proinsulin tetramer-positive T cells. These results strongly imply a direct relationship between genetic control of autoantigen expression and peripheral autoreactivity, in which proinsulin genotype restricts the quantity and quality of the potential T-cell response. Using a modified tetramer to isolate low-avidity proinsulin-specific T cells from subjects with the susceptible genotype, transcript arrays identified several induced pro-apoptotic genes in the control, but not diabetic subjects, likely representing a second peripheral mechanism for maintenance of tolerance to self antigens

    Unique Type I Interferon Responses Determine the Functional Fate of Migratory Lung Dendritic Cells during Influenza Virus Infection

    Get PDF
    Migratory lung dendritic cells (DCs) transport viral antigen from the lungs to the draining mediastinal lymph nodes (MLNs) during influenza virus infection to initiate the adaptive immune response. Two major migratory DC subsets, CD103+ DCs and CD11bhigh DCs participate in this function and it is not clear if these antigen presenting cell (APC) populations become directly infected and if so whether their activity is influenced by the infection. In these experiments we show that both subpopulations can become infected and migrate to the draining MLN but a difference in their response to type I interferon (I-IFN) signaling dictates the capacity of the virus to replicate. CD103+ DCs allow the virus to replicate to significantly higher levels than do the CD11bhigh DCs, and they release infectious virus in the MLNs and when cultured ex-vivo. Virus replication in CD11bhigh DCs is inhibited by I-IFNs, since ablation of the I-IFN receptor (IFNAR) signaling permits virus to replicate vigorously and productively in this subset. Interestingly, CD103+ DCs are less sensitive to I-IFNs upregulating interferon-induced genes to a lesser extent than CD11bhigh DCs. The attenuated IFNAR signaling by CD103+ DCs correlates with their described superior antigen presentation capacity for naΓ―ve CD8+ T cells when compared to CD11bhigh DCs. Indeed ablation of IFNAR signaling equalizes the competency of the antigen presenting function for the two subpopulations. Thus, antigen presentation by lung DCs is proportional to virus replication and this is tightly constrained by I-IFN. The β€œinterferon-resistant” CD103+ DCs may have evolved to ensure the presentation of viral antigens to T cells in I-IFN rich environments. Conversely, this trait may be exploitable by viral pathogens as a mechanism for systemic dissemination
    • …
    corecore