5 research outputs found

    RNA-interference in rice against Rice tungro bacilliform virus results in its decreased accumulation in inoculated rice plants

    Get PDF
    Rice tungro is a viral disease seriously affecting rice production in South and Southeast Asia. Tungro is caused by the simultaneous infection in rice of Rice tungro bacilliform virus (RTBV), a double-stranded DNA virus and Rice tungro spherical virus (RTSV), a single-stranded RNA virus. To apply the concept of RNA-interference (RNAi) for the control of RTBV infection, transgenic rice plants expressing DNA encoding ORF IV of RTBV, both in sense as well as in anti-sense orientation, resulting in the formation of double-stranded (ds) RNA, were raised. RNA blot analysis of two representative lines indicated specific degradation of the transgene transcripts and the accumulation of small molecular weight RNA, a hallmark for RNA-interference. In the two transgenic lines expressing ds-RNA, different resistance responses were observed against RTBV. In one of the above lines (RTBV-O-Ds1), there was an initial rapid buildup of RTBV levels following inoculation, comparable to that of untransformed controls, followed by a sharp reduction, resulting in approximately 50-fold lower viral titers, whereas the untransformed controls maintained high levels of the virus till 40 days post-inoculation (dpi). In RTBV-O-Ds2, RTBV DNA levels gradually rose from an initial low to almost 60% levels of the control by 40 dpi. Line RTBV-O-Ds1 showed symptoms of tungro similar to the untransformed control lines, whereas line RTBV-O-Ds2 showed extremely mild symptoms

    Inhibition of Tomato Yellow Leaf Curl Virus (TYLCV) using whey proteins

    Get PDF
    <p>Abstract</p> <p>The antiviral activity of native and esterified whey proteins fractions (α-lactalbumin, β-lactoglobulin, and lactoferrin) was studied to inhibit tomato yellow leaf curl virus (TYLCV) on infected tomato plants. Whey proteins fractions and their esterified derivatives were sprayed into TYLCV-infected plants. Samples were collected from infected leaves before treatment, 7 and 15 days after treatment for DNA and molecular hybridization analysis. The most evident inhibition of virus replication was observed after 7 and 15 days using α-lactoferrin and α-lactalbumin, respectively. Native and esterified lactoferrin showed complete inhibition after 7 days. On the other hand, native β-lactoglobulin showed inhibition after 7 and 15 days whereas esterified β-lactoglobulin was comparatively more effective after 7 days. The relative amount of viral DNA was less affected by the esterified α-lactalbumin whereas native α-lactalbumin inhibited virus replication completely after 15 days. These results indicate that native or modified whey proteins fractions can be used for controlling the TYLCV-infected plants.</p

    Oxidative stress and diabetes: antioxidative strategies

    No full text
    corecore