15 research outputs found

    T cells discriminate between groups C1 and C2 HLA-C

    No full text
    Dimorphic amino acids at positions 77 and 80 delineate HLA-C allotypes into two groups, C1 and C2, which associate with disease through interactions with C1 and C2-specific natural killer cell receptors. How the C1/C2 dimorphism affects T cell recognition is unknown. Using HLA-C allotypes that differ only by the C1/C2-defining residues, we found that KRAS-G12D neoantigen-specific T cell receptors (TCRs) discriminated between C1 and C2 presenting the same KRAS-G12D peptides. Structural and functional experiments, and immunopeptidomics analysis revealed that Ser77 in C1 and Asn77 in C2 influence amino acid preference near the peptide C-terminus (pΩ), including the pΩ-1 position, in which C1 favors small and C2 prefers large residues. This resulted in weaker TCR affinity for KRAS-G12D-bound C2-HLA-C despite conserved TCR contacts. Thus, the C1/C2 dimorphism on its own impacts peptide presentation and HLA-C-restricted T cell responses, with implications in disease, including adoptive T cell therapy targeting KRAS-G12D-induced cancers

    Porphobilinogen deaminase deficiency in mice causes a neuropathy resembling that of human hepatic porphyria.

    Full text link
    Acute intermittent porphyria (AIP) is a human disease resulting from a dominantly inherited partial deficiency of the heme biosynthetic enzyme, porphobilinogen deaminase (PBGD). The frequency of the trait for AIP is 1/10,000 in most populations, but may be markedly higher (1/500) in psychiatric patients. The clinical expression of the disease is characterized by acute, life-threatening attacks of 'porphyric neuropathy' that include abdominal pain, motor and sensory neurological deficits and psychiatric symptoms. Attacks are frequently precipitated by drugs, alcohol and low caloric intake. Identical symptoms occur in other hepatic porphyrias. To study the pathogenesis of the neurologic symptoms of AIP we have generated Pbgd-deficient mice by gene targeting. These mice exhibit the typical biochemical characteristics of human AIP, notably, decreased hepatic Pbgd activity, increased delta-aminolevulinic acid synthase activity and massively increased urinary excretion of the heme precursor, delta-aminolevulinic acid after treatment with drugs such as phenobarbital. Behavioural tests reveal decreased motor function and histopathological findings include axonal neuropathy and neurologic muscle atrophy
    corecore