8 research outputs found

    Coexistence via Resource Partitioning Fails to Generate an Increase in Community Function

    Get PDF
    Classic ecological theory suggests that resource partitioning facilitates the coexistence of species by reducing inter-specific competition. A byproduct of this process is an increase in overall community function, because a greater spectrum of resources can be used. In contrast, coexistence facilitated by neutral mechanisms is not expected to increase function. We studied coexistence in laboratory microcosms of the bactivorous ciliates Paramecium aurelia and Colpidium striatum to understand the relationship between function and coexistence mechanism. We quantified population and community-level function (biomass and oxygen consumption), competitive interactions, and resource partitioning. The two ciliates partitioned their bacterial resource along a size axis, with the larger ciliate consuming larger bacteria than the smaller ciliate. Despite this, there was no gain in function at the community level for either biomass or oxygen consumption, and competitive effects were symmetrical within and between species. Because other potential coexistence mechanisms can be ruled out, it is likely that inter-specific interference competition diminished the expected gain in function generated by resource partitioning, leading to a system that appeared competitively neutral even when structured by niche partitioning. We also analyzed several previous studies where two species of protists coexisted and found that the two-species communities showed a broad range of biomass levels relative to the single-species states

    Time and Origin of Cichlid Colonization of the Lower Congo Rapids

    Get PDF
    Most freshwater diversity is arguably located in networks of rivers and streams, but, in contrast to lacustrine systems riverine radiations, are largely understudied. The extensive rapids of the lower Congo River is one of the few river stretches inhabited by a locally endemic cichlid species flock as well as several species pairs, for which we provide evidence that they have radiated in situ. We use more that 2,000 AFLP markers as well as multilocus sequence datasets to reconstruct their origin, phylogenetic history, as well as the timing of colonization and speciation of two Lower Congo cichlid genera, Steatocranus and Nanochromis. Based on a representative taxon sampling and well resolved phylogenetic hypotheses we demonstrate that a high level of riverine diversity originated in the lower Congo within about 5 mya, which is concordant with age estimates for the hydrological origin of the modern lower Congo River. A spatial genetic structure is present in all widely distributed lineages corresponding to a trisection of the lower Congo River into major biogeographic areas, each with locally endemic species assemblages. With the present study, we provide a phylogenetic framework for a complex system that may serve as a link between African riverine cichlid diversity and the megadiverse cichlid radiations of the East African lakes. Beyond this we give for the first time a biologically estimated age for the origin of the lower Congo River rapids, one of the most extreme freshwater habitats on earth

    The biology of extinct and extant sawfish (Batoidea: Sclerorhynchidae and Pristidae)

    No full text
    Sclerorhynchids (extinct sawfishes, Batoidea), pristids (extant sawfish, Batoidea) and pristiophorids (sawsharks, Squalomorphi) are the three elasmobranch families that possess an elongated rostrum with lateral teeth. Sclerorhynchids are the extinct sawfishes of the Cretaceous period, which reached maximum total lengths of 100\ua0cm. The morphology of their rostral teeth is highly variable. Pristid sawfish occur circumtropically and can reach maximum total lengths of around 700\ua0cm. All pristid species are globally endangered due to their restricted habitat inshore. Pristiophorid sawsharks are small sharks of maximum total lengths below 150\ua0cm, which occur in depths of 70–900\ua0m. Close examination of the morphology of pectoral fin basals and the internal structure of the rostrum reveals that sclerorhynchids and pristids evolved independently from rhinobatids, whereas pristiophorids are squalomorph sharks. The elongation of the rostrum may be an adaptation for feeding, as all marine vertebrate taxa that possess this structure are said to use it in the context of feeding
    corecore