35 research outputs found

    Influence of preoperative nucleus pulposus status and radiculopathy on outcomes in mono-segmental lumbar total disc replacement: results from a nationwide registry

    Get PDF
    Background: Currently, herniated nucleus pulposus (HNP) with radiculopathy and other preconditions are regarded as relative or absolute contraindications for lumbar total disc replacement (TDR). In Switzerland it is left to the surgeon's discretion when to operate. The present study is based on the dataset of SWISSspine, a governmentally mandated health technology assessment registry. We hypothesized that preoperative nucleus pulposus status and presence or absence of radiculopathy has an influence on clinical outcomes in patients treated with mono-segmental lumbar TDR. Methods. Between March 2005 and April 2009, 416 patients underwent mono-segmental lumbar TDR, which was documented in a prospective observational multicenter mode. The data collection consisted of perioperative and follow-up data (physician based) and clinical outcomes (NASS, EQ-5D). Patients were divided into four groups according to their preoperative status: 1) group degenerative disc disease ("DDD"): 160 patients without HNP and no radiculopathy, classic precondition for TDR; 2) group "HNP-No radiculopathy": 68 patients with HNP but without radiculopathy; 3) group "Stenosis": 73 patients without HNP but with radiculopathy, and 4) group "HNP-Radiculopathy": 132 patients with HNP and radiculopathy. The groups were compared regarding preoperative patient characteristics and pre- and postoperative VAS and EQ-5D scores using general linear modeling. Results: Demographics in all four groups were comparable. Regarding the improvement of quality of life (EQ-5D) there were no differences across the four groups. For the two main groups DDD and HNP-Radiculopathy no differences were found in the adjusted postoperative back- and leg pain alleviation levels, in the stenosis group back- and leg pain relief were lower. Conclusions: Despite higher preoperative leg pain levels, outcomes in lumbar TDR patients with HNP and radiculopathy were similar to outcomes in patients with the classic indication; this because patients with higher preoperative leg pain levels benefit from a relatively greater leg pain alleviation. The group with absence of HNP but presence of radiculopathy showed considerably less benefits from the operation, which is probably related to ongoing degenerative processes of the posterior segmental structures. This observational multicenter study suggests that the diagnoses HNP and radiculopathy, combined or alone, may not have to be considered as absolute or relative contraindications for mono-segmental lumbar TDR anymore, whereas patients without HNP but with radiculopathy seem to be suboptimal candidates for the procedure. © 2011 Zweig et al; licensee BioMed Central Ltd

    Phylogenomic analyses of malaria parasites and evolution of their exported proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Plasmodium falciparum </it>is the most malignant agent of human malaria. It belongs to the taxon Laverania, which includes other ape-infecting <it>Plasmodium </it>species. The origin of the Laverania is still debated. <it>P. falciparum </it>exports pathogenicity-related proteins into the host cell using the <it>Plasmodium </it>export element (PEXEL). Predictions based on the presence of a PEXEL motif suggest that more than 300 proteins are exported by <it>P. falciparum</it>, while there are many fewer exported proteins in non-Laverania.</p> <p>Results</p> <p>A whole-genome approach was applied to resolve the phylogeny of eight <it>Plasmodium </it>species and four outgroup taxa. By using 218 orthologous proteins we received unanimous support for a sister group position of Laverania and avian malaria parasites. This observation was corroborated by the analyses of 28 exported proteins with orthologs present in all <it>Plasmodium </it>species. Most interestingly, several deviations from the <it>P. falciparum </it>PEXEL motif were found to be present in the orthologous sequences of non-Laverania.</p> <p>Conclusion</p> <p>Our phylogenomic analyses strongly support the hypotheses that the Laverania have been founded by a single <it>Plasmodium </it>species switching from birds to African great apes or <it>vice versa</it>. The deviations from the canonical PEXEL motif in orthologs may explain the comparably low number of exported proteins that have been predicted in non-Laverania.</p

    Chlamydia trachomatis Co-opts the FGF2 Signaling Pathway to Enhance Infection

    Get PDF
    The molecular details of Chlamydia trachomatis binding, entry, and spread are incompletely understood, but heparan sulfate proteoglycans (HSPGs) play a role in the initial binding steps. As cell surface HSPGs facilitate the interactions of many growth factors with their receptors, we investigated the role of HSPG-dependent growth factors in C. trachomatis infection. Here, we report a novel finding that Fibroblast Growth Factor 2 (FGF2) is necessary and sufficient to enhance C. trachomatis binding to host cells in an HSPG-dependent manner. FGF2 binds directly to elementary bodies (EBs) where it may function as a bridging molecule to facilitate interactions of EBs with the FGF receptor (FGFR) on the cell surface. Upon EB binding, FGFR is activated locally and contributes to bacterial uptake into non-phagocytic cells. We further show that C. trachomatis infection stimulates fgf2 transcription and enhances production and release of FGF2 through a pathway that requires bacterial protein synthesis and activation of the Erk1/2 signaling pathway but that is independent of FGFR activation. Intracellular replication of the bacteria results in host proteosome-mediated degradation of the high molecular weight (HMW) isoforms of FGF2 and increased amounts of the low molecular weight (LMW) isoforms, which are released upon host cell death. Finally, we demonstrate the in vivo relevance of these findings by showing that conditioned medium from C. trachomatis infected cells is enriched for LMW FGF2, accounting for its ability to enhance C. trachomatis infectivity in additional rounds of infection. Together, these results demonstrate that C. trachomatis utilizes multiple mechanisms to co-opt the host cell FGF2 pathway to enhance bacterial infection and spread

    Cardiovascular magnetic resonance phase contrast imaging

    Get PDF
    corecore