26 research outputs found
Non-variant specific antibody responses to the C-terminal region of merozoite surface protein-1 of Plasmodium falciparum (PfMSP-119) in Iranians exposed to unstable malaria transmission
<p>Abstract</p> <p>Background</p> <p>The C-terminal region of <it>Plasmodium falciparum </it>merozoite surface protein-1 (PfMSP-1<sub>19</sub>) is a leading malaria vaccine candidate antigen. However, the existence of different variants of this antigen can limit efficacy of the vaccine development based on this protein. Therefore, in this study, the main objective was to define the frequency of PfMSP-1<sub>19 </sub>haplotypes in malaria hypoendemic region of Iran and also to analyse cross-reactive and/or variant-specific antibody responses to four PfMSP-1<sub>19 </sub>variant forms.</p> <p>Methods</p> <p>The PfMSP-1<sub>19 </sub>was genotyped in 50 infected subjects with <it>P. falciparum </it>collected during 2006-2008. Four GST-PfMSP-1<sub>19 </sub>variants (E/TSR/L, E/TSG/L, E/KNG/F and Q/KNG/L) were produced in <it>Escherichia coli </it>and naturally occurring IgG antibody to these proteins was evaluated in malaria patients' sera (n = 50) using ELISA. To determine the cross-reactivity of antibodies against each PfMSP-1<sub>19 </sub>variant in <it>P. falciparum-</it>infected human sera, an antibody depletion assay was performed in eleven corresponding patients' sera.</p> <p>Results</p> <p>Sequence data of the PfMSP-1<sub>19 </sub>revealed five variant forms in which the haplotypes Q/KNG/L and Q/KNG/F were predominant types and the second most frequent haplotype was E/KNG/F. In addition, the prevalence of IgG antibodies to all four PfMSP-1<sub>19 </sub>variant forms was equal and high (84%) among the studied patients' sera. Immunodepletion results showed that in Iranian malaria patients, Q/KNG/L variant could induce not only cross-reactive antibody responses to other PfMSP-1<sub>19 </sub>variants, but also could induce some specific antibodies that are not able to recognize the E/TSG/L or E/TSR/L variant forms.</p> <p>Conclusion</p> <p>The present findings demonstrated the presence of non-variant specific antibodies to PfMSP-1<sub>19 </sub>in Iranian falciparum malaria patients. This data suggests that polymorphism in PfMSP-1<sub>19 </sub>is less important and one variant of this antigen, particularly Q/KNG/L, may be sufficient to be included in PfMSP-1<sub>19</sub>-based vaccine.</p
Cathodal transcranial direct-current stimulation for treatment of drug-resistant temporal lobe epilepsy: A pilot randomized controlled trial.
Objective: To investigate the effect of cathodal transcranial direct-current stimulation (c-tDCS) on seizure frequency in patients with drug-resistant temporal lobe epilepsy (TLE). Method: Twenty-nine patients with drug-resistant TLE participated in this study. They were randomized to experimental or sham group. Twenty participants (experimental group) received within-session repeated c-tDCS intervention over the affected temporal lobe, and nine (sham group) received sham tDCS. Paired-pulse transcranial magnetic stimulation was used to assess short interval intracortical inhibition (SICI) in primary motor cortex ipsilateral to the affected temporal lobe. SICI was measured from motor evoked potentials recorded from the contralateral first dorsal interosseous muscle. Adverse effects were monitored during and after each intervention in both groups. A seizure diary was given to each participant to complete for 4 weeks following the tDCS intervention. The mean response ratio was calculated from their seizure rates before and after the tDCS intervention. Results: The experimental group showed a significant increase in SICI compared to the sham group (F = 10.3, p = 0.005). None of the participants reported side effects of moderate or severe degree. The mean response ratio in seizure frequency was -42.14% (standard deviation [SD] 35.93) for the experimental group and -16.98% (SD 52.41) for the sham group. Significance: Results from this pilot study suggest that tDCS may be a safe and efficacious nonpharmacologic intervention for patients with drug-resistant TLE. Further evaluation in larger double-blind randomized controlled trials is warranted
The effects of sex hormonal fluctuations during menstrual cycle on cortical excitability and manual dexterity (a pilot study)
To investigate whether hormonal fluctuations during the menstrual cycle affect corticospinal excitability, intracortical inhibition (ICI) or facilitation (ICF) in primary motor cortex, and also whether the hormonal fluctuations have any effect on manual dexterity in neurologically intact women.Twenty volunteers (10 Female, 10 Male) were included in this study. The levels of progesterone and estradiol were measured from saliva during the women's menstrual follicular, ovulation and mid-luteal phases. Motor evoked potentials were recorded from the right first dorsal interosseous muscle. Single and paired-pulse Transcranial Magnetic Stimulation (TMS) were delivered in a block of 20 stimuli. With paired-pulse technique, 3ms and 10ms inter-stimulus intervals were used to assess ICI and ICF, respectively. The Grooved Pegboard Test (GPT) was completed in each session before the TMS assessments. Male participants were tested at similar time intervals as female participants.Mixed design ANOVA revealed that GPT score in female participants was significantly lower at the mid-luteal phase compared to the ovulation phase (p = 0.017). However, it was not correlated with progesterone or estrogen fluctuations during the menstrual cycle. The results also showed that the effect of phase, sex and the interaction of phase by sex for resting motor threshold, ICI or ICF were not significant (p > 0.05).Manual dexterity performance fluctuates during the menstrual cycle in neurologically intact women, which might be due to the balance of the neuromodulatory effects of P4 and E2 in the motor cortex during different phases