6 research outputs found

    An asymmetric junctional mechanoresponse coordinates mitotic rounding with epithelial integrity

    Get PDF
    Epithelia are continuously self-renewed, but how epithelial integrity is maintained during the morphological changes that cells undergo in mitosis is not well understood. Here, we show that as epithelial cells round up when they enter mitosis, they exert tensile forces on neighboring cells. We find that mitotic cell–cell junctions withstand these tensile forces through the mechanosensitive recruitment of the actin-binding protein vinculin to cadherin-based adhesions. Surprisingly, vinculin that is recruited to mitotic junctions originates selectively from the neighbors of mitotic cells, resulting in an asymmetric composition of cadherin junctions. Inhibition of junctional vinculin recruitment in neighbors of mitotic cells results in junctional breakage and weakened epithelial barrier. Conversely, the absence of vinculin from the cadherin complex in mitotic cells is necessary to successfully undergo mitotic rounding. Our data thus identify an asymmetric mechanoresponse at cadherin adhesions during mitosis, which is essential to maintain epithelial integrity while at the same time enable the shape changes of mitotic cells

    A Fluorescence-Based High-Throughput Assay for the Discovery of Exchange Protein Directly Activated by Cyclic AMP (EPAC) Antagonists

    Get PDF
    Background: The discovery, more than ten years ago, of exchange proteins directly activated by cAMP (EPAC) as a new family of intracellular cAMP receptors revolutionized the cAMP signaling research field. Extensive studies have revealed that the cAMP signaling network is much more complex and dynamic as many cAMP-related cellular processes, previously thought to be controlled by protein kinase A, are found to be also mediated by EPAC proteins. Although there have been many important discoveries in the roles of EPACs greater understanding of their physiological function in cAMP-mediated signaling is impeded by the absence of EPAC-specific antagonist. Methodology/Principal Findings: To overcome this deficit, we have developed a fluorescence-based high throughput assay for screening EPAC specific antagonists. Our assay is highly reproducible and simple to perform using the ‘‘mix and measure’ ’ format. A pilot screening using the NCI-DTP diversity set library led to the identification of small chemical compounds capable of specifically inhibiting cAMP-induced EPAC activation while not affecting PKA activity. Conclusions/Significance: Our study establishes a robust high throughput screening assay that can be effectively applied for the discovery of EPAC-specific antagonists, which may provide valuable pharmacological tools for elucidating th

    Molecular Basis of cAMP Signaling in Pancreatic Beta Cells

    No full text

    Molecular Basis of cAMP Signaling in Pancreatic β Cells

    No full text
    corecore