54 research outputs found
The Characterisation of Three Types of Genes that Overlie Copy Number Variable Regions
Background: Due to the increased accuracy of Copy Number Variable region (CNV) break point mapping, it is now possible to say with a reasonable degree of confidence whether a gene (i) falls entirely within a CNV; (ii) overlaps the CNV or (iii) actually contains the CNV. We classify these as type I, II and III CNV genes respectively. Principal Findings: Here we show that although type I genes vary in copy number along with the CNV, most of these type I genes have the same expression levels as wild type copy numbers of the gene. These genes must, therefore, be under homeostatic dosage compensation control. Looking into possible mechanisms for the regulation of gene expression we found that type I genes have a significant paucity of genes regulated by miRNAs and are not significantly enriched for monoallelically expressed genes. Type III genes, on the other hand, have a significant excess of genes regulated by miRNAs and are enriched for genes that are monoallelically expressed. Significance: Many diseases and genomic disorders are associated with CNVs so a better understanding of the different ways genes are associated with normal CNVs will help focus on candidate genes in genome wide association studies
A systematic, large-scale comparison of transcription factor binding site models
Background The modelling of gene regulation is a major challenge in biomedical
research. This process is dominated by transcription factors (TFs) and
mutations in their binding sites (TFBSs) may cause the misregulation of genes,
eventually leading to disease. The consequences of DNA variants on TF binding
are modelled in silico using binding matrices, but it remains unclear whether
these are capable of accurately representing in vivo binding. In this study,
we present a systematic comparison of binding models for 82 human TFs from
three freely available sources: JASPAR matrices, HT-SELEX-generated models and
matrices derived from protein binding microarrays (PBMs). We determined their
ability to detect experimentally verified “real” in vivo TFBSs derived from
ENCODE ChIP-seq data. As negative controls we chose random downstream exonic
sequences, which are unlikely to harbour TFBS. All models were assessed by
receiver operating characteristics (ROC) analysis. Results While the area-
under-curve was low for most of the tested models with only 47 % reaching a
score of 0.7 or higher, we noticed strong differences between the various
position-specific scoring matrices with JASPAR and HT-SELEX models showing
higher success rates than PBM-derived models. In addition, we found that while
TFBS sequences showed a higher degree of conservation than randomly chosen
sequences, there was a high variability between individual TFBSs. Conclusions
Our results show that only few of the matrix-based models used to predict
potential TFBS are able to reliably detect experimentally confirmed TFBS. We
compiled our findings in a freely accessible web application called ePOSSUM
(http:/mutationtaster.charite.de/ePOSSUM/) which uses a Bayes classifier to
assess the impact of genetic alterations on TF binding in user-defined
sequences. Additionally, ePOSSUM provides information on the reliability of
the prediction using our test set of experimentally confirmed binding sites
Correction: S1PR1 drives a feedforward signalling loop to regulate BATF3 and the transcriptional programme of Hodgkin lymphoma cells.
An amendment to this paper has been published and can be accessed via a link at the top of the paper
A new strategy for isolating genes controlling dosage compensation in Drosophila using a simple epigenetic mosaic eye phenotype
<p>Abstract</p> <p>Background</p> <p>The <it>Drosophila </it>Male Specific Lethal (MSL) complex contains chromatin modifying enzymes and non-coding <it>roX </it>RNA. It paints the male X at hundreds of bands where it acetylates histone H4 at lysine 16. This epigenetic mark increases expression from the single male X chromosome approximately twofold above what gene-specific factors produce from each female X chromosome. This equalises X-linked gene expression between the sexes. Previous screens for components of dosage compensation relied on a distinctive male-specific lethal phenotype.</p> <p>Results</p> <p>Here, we report a new strategy relying upon an unusual male-specific mosaic eye pigmentation phenotype produced when the MSL complex acts upon autosomal <it>roX1 </it>transgenes. Screening the second chromosome identified at least five loci, two of which are previously described components of the MSL complex. We focused our analysis on the modifier alleles of MSL1 and MLE (for 'maleless'). The MSL1 lesions are not simple nulls, but rather alter the PEHE domain that recruits the MSL3 chromodomain and MOF ('males absent on first') histone acetyltransferase subunits to the complex. These mutants are compromised in their ability to recruit MSL3 and MOF, dosage compensate the X, and support long distance spreading from <it>roX1 </it>transgenes. Yet, paradoxically, they were isolated because they somehow increase MSL complex activity immediately around <it>roX1 </it>transgenes in combination with wild-type MSL1 subunits.</p> <p>Conclusions</p> <p>We propose that these diverse phenotypes arise from perturbations in assembly of MSL subunits onto nascent <it>roX </it>transcripts. This strategy is a promising alternative route for identifying previously unknown components of the dosage compensation pathway and novel alleles of known MSL proteins.</p
The Annotation, Mapping, Expression and Network (AMEN) suite of tools for molecular systems biology
<p>Abstract</p> <p>Background</p> <p>High-throughput genome biological experiments yield large and multifaceted datasets that require flexible and user-friendly analysis tools to facilitate their interpretation by life scientists. Many solutions currently exist, but they are often limited to specific steps in the complex process of data management and analysis and some require extensive informatics skills to be installed and run efficiently.</p> <p>Results</p> <p>We developed the Annotation, Mapping, Expression and Network (AMEN) software as a stand-alone, unified suite of tools that enables biological and medical researchers with basic bioinformatics training to manage and explore genome annotation, chromosomal mapping, protein-protein interaction, expression profiling and proteomics data. The current version provides modules for (i) uploading and pre-processing data from microarray expression profiling experiments, (ii) detecting groups of significantly co-expressed genes, and (iii) searching for enrichment of functional annotations within those groups. Moreover, the user interface is designed to simultaneously visualize several types of data such as protein-protein interaction networks in conjunction with expression profiles and cellular co-localization patterns. We have successfully applied the program to interpret expression profiling data from budding yeast, rodents and human.</p> <p>Conclusion</p> <p>AMEN is an innovative solution for molecular systems biological data analysis freely available under the GNU license. The program is available via a website at the Sourceforge portal which includes a user guide with concrete examples, links to external databases and helpful comments to implement additional functionalities. We emphasize that AMEN will continue to be developed and maintained by our laboratory because it has proven to be extremely useful for our genome biological research program.</p
KRAB–Zinc Finger Proteins and KAP1 Can Mediate Long-Range Transcriptional Repression through Heterochromatin Spreading
Krüppel-associated box domain-zinc finger proteins (KRAB–ZFPs) are tetrapod-specific transcriptional repressors encoded in the hundreds by the human genome. In order to explore their as yet ill-defined impact on gene expression, we developed an ectopic repressor assay, allowing the study of KRAB–mediated transcriptional regulation at hundreds of different transcriptional units. By targeting a drug-controllable KRAB–containing repressor to gene-trapping lentiviral vectors, we demonstrate that KRAB and its corepressor KAP1 can silence promoters located several tens of kilobases (kb) away from their DNA binding sites, with an efficiency which is generally higher for promoters located within 15 kb or less. Silenced promoters exhibit a loss of histone H3-acetylation, an increase in H3 lysine 9 trimethylation (H3K9me3), and a drop in RNA Pol II recruitment, consistent with a block of transcriptional initiation following the establishment of silencing marks. Furthermore, we reveal that KRAB–mediated repression is established by the long-range spreading of H3K9me3 and heterochromatin protein 1 β (HP1β) between the repressor binding site and the promoter. We confirm the biological relevance of this phenomenon by documenting KAP1–dependent transcriptional repression at an endogenous KRAB–ZFP gene cluster, where KAP1 binds to the 3′ end of genes and mediates propagation of H3K9me3 and HP1β towards their 5′ end. Together, our data support a model in which KRAB/KAP1 recruitment induces long-range repression through the spread of heterochromatin. This finding not only suggests auto-regulatory mechanisms in the control of KRAB–ZFP gene clusters, but also provides important cues for interpreting future genome-wide DNA binding data of KRAB–ZFPs and KAP1
Transcriptional Regulation of Rod Photoreceptor Homeostasis Revealed by In Vivo NRL Targetome Analysis
A stringent control of homeostasis is critical for functional maintenance and survival of neurons. In the mammalian retina, the basic motif leucine zipper transcription factor NRL determines rod versus cone photoreceptor cell fate and activates the expression of many rod-specific genes. Here, we report an integrated analysis of NRL-centered gene regulatory network by coupling chromatin immunoprecipitation followed by high-throughput sequencing (ChIP–Seq) data from Illumina and ABI platforms with global expression profiling and in vivo knockdown studies. We identified approximately 300 direct NRL target genes. Of these, 22 NRL targets are associated with human retinal dystrophies, whereas 95 mapped to regions of as yet uncloned retinal disease loci. In silico analysis of NRL ChIP–Seq peak sequences revealed an enrichment of distinct sets of transcription factor binding sites. Specifically, we discovered that genes involved in photoreceptor function include binding sites for both NRL and homeodomain protein CRX. Evaluation of 26 ChIP–Seq regions validated their enhancer functions in reporter assays. In vivo knockdown of 16 NRL target genes resulted in death or abnormal morphology of rod photoreceptors, suggesting their importance in maintaining retinal function. We also identified histone demethylase Kdm5b as a novel secondary node in NRL transcriptional hierarchy. Exon array analysis of flow-sorted photoreceptors in which Kdm5b was knocked down by shRNA indicated its role in regulating rod-expressed genes. Our studies identify candidate genes for retinal dystrophies, define cis-regulatory module(s) for photoreceptor-expressed genes and provide a framework for decoding transcriptional regulatory networks that dictate rod homeostasis
- …