7 research outputs found

    Intravenously Administered Alphavirus Vector VA7 Eradicates Orthotopic Human Glioma Xenografts in Nude Mice

    Get PDF
    VA7 is a neurotropic alphavirus vector based on an attenuated strain of Semliki Forest virus. We have previously shown that VA7 exhibits oncolytic activity against human melanoma xenografts in immunodeficient mice. The purpose of this study was to determine if intravenously administered VA7 would be effective against human glioma.In vitro, U87, U251, and A172 human glioma cells were infected and killed by VA7-EGFP. In vivo, antiglioma activity of VA7 was tested in Balb/c nude mice using U87 cells stably expressing firefly luciferase in subcutaneous and orthotopic tumor models. Intravenously administered VA7-EGFP completely eradicated 100% of small and 50% of large subcutaneous U87Fluc tumors. A single intravenous injection of either VA7-EGFP or VA7 expressing Renilla luciferase (VA7-Rluc) into mice bearing orthotopic U87Fluc tumors caused a complete quenching of intracranial firefly bioluminescence and long-term survival in total 16 of 17 animals. In tumor-bearing mice injected with VA7-Rluc, transient intracranial and peripheral Renilla bioluminescence was observed. Virus was well tolerated and no damage to heart, liver, spleen, or brain was observed upon pathological assessment at three and ninety days post injection, despite detectable virus titers in these organs during the earlier time point.VA7 vector is apathogenic and can enter and destroy brain tumors in nude mice when administered systemically. This study warrants further elucidation of the mechanism of tumor destruction and attenuation of the VA7 virus

    Regulation of Transgene Expression in Tumor Cells by Exploiting Endogenous Intracellular Signals

    Get PDF
    Recently, we have proposed a novel strategy for a cell-specific gene therapy system based on responses to intracellular signals. In this system, an intracellular signal that is specifically and abnormally activated in the diseased cells is used for the activation of transgene expression. In this study, we used protein kinase C (PKC)Îą as a trigger to activate transgene expression. We prepared a PKCÎą-responsive polymer conjugate [PPC(S)] and a negative control conjugate [PPC(A)], in which the phosphorylation site serine (Ser) was replaced with alanine (Ala). The phosphorylation for polymer/DNA complexes was determined with a radiolabel assay using [Îł-32P]ATP. PPC(S)/DNA complexes were phosphorylated by the addition of PKCÎą, but no phosphorylation of the PPC(A)/DNA complex was observed. Moreover, after microinjection of polymer/GFP-encoding DNA complexes into HepG2 cells at cation/anion (C/A) ratios of 0.5 to 2.0, significant expression of GFP was observed in all cases using PPC(S)/DNA complexes, but no GFP expression was observed in the negative control PPC(A)/DNA complex-microinjected cells at C/A ratios of 1.0 and 2.0. On the other hand, GFP expression from PPC(S)/DNA complexes was completely suppressed in cells pretreated with PKCÎą inhibitor (Ro31-7549). These results suggest that our gene regulation system can be used for tumor cell-specific expression of a transgene in response to PKCÎą activity

    Maturation in Atlantic salmon (Salmo salar, Salmonidae): a synthesis of ecological, genetic, and molecular processes

    No full text
    corecore