67 research outputs found

    Chemotactic response and adaptation dynamics in Escherichia coli

    Get PDF
    Adaptation of the chemotaxis sensory pathway of the bacterium Escherichia coli is integral for detecting chemicals over a wide range of background concentrations, ultimately allowing cells to swim towards sources of attractant and away from repellents. Its biochemical mechanism based on methylation and demethylation of chemoreceptors has long been known. Despite the importance of adaptation for cell memory and behavior, the dynamics of adaptation are difficult to reconcile with current models of precise adaptation. Here, we follow time courses of signaling in response to concentration step changes of attractant using in vivo fluorescence resonance energy transfer measurements. Specifically, we use a condensed representation of adaptation time courses for efficient evaluation of different adaptation models. To quantitatively explain the data, we finally develop a dynamic model for signaling and adaptation based on the attractant flow in the experiment, signaling by cooperative receptor complexes, and multiple layers of feedback regulation for adaptation. We experimentally confirm the predicted effects of changing the enzyme-expression level and bypassing the negative feedback for demethylation. Our data analysis suggests significant imprecision in adaptation for large additions. Furthermore, our model predicts highly regulated, ultrafast adaptation in response to removal of attractant, which may be useful for fast reorientation of the cell and noise reduction in adaptation.Comment: accepted for publication in PLoS Computational Biology; manuscript (19 pages, 5 figures) and supplementary information; added additional clarification on alternative adaptation models in supplementary informatio

    Single-Cell Census of Mechanosensitive Channels in Living Bacteria

    Get PDF
    Bacteria are subjected to a host of different environmental stresses. One such insult occurs when cells encounter changes in the osmolarity of the surrounding media resulting in an osmotic shock. In recent years, a great deal has been learned about mechanosensitive (MS) channels which are thought to provide osmoprotection in these circumstances by opening emergency release valves in response to membrane tension. However, even the most elementary physiological parameters such as the number of MS channels per cell, how MS channel expression levels influence the physiological response of the cells, and how this mean number of channels varies from cell to cell remain unanswered. In this paper, we make a detailed quantitative study of the expression of the mechanosensitive channel of large conductance (MscL) in different media and at various stages in the growth history of bacterial cultures. Using both quantitative fluorescence microscopy and quantitative Western blots our study complements earlier electrophysiology-based estimates and results in the following key insights: i) the mean number of channels per cell is much higher than previously estimated, ii) measurement of the single-cell distributions of such channels reveals marked variability from cell to cell and iii) the mean number of channels varies under different environmental conditions. The regulation of MscL expression displays rich behaviors that depend strongly on culturing conditions and stress factors, which may give clues to the physiological role of MscL. The number of stress-induced MscL channels and the associated variability have far reaching implications for the in vivo response of the channels and for modeling of this response. As shown by numerous biophysical models, both the number of such channels and their variability can impact many physiological processes including osmoprotection, channel gating probability, and channel clustering

    LPS unmasking of Shigella flexneri reveals preferential localisation of tagged outer membrane protease IcsP to septa and new poles

    Get PDF
    The Shigella flexneri outer membrane (OM) protease IcsP (SopA) is a member of the enterobacterial Omptin family of proteases which cleaves the polarly localised OM protein IcsA that is essential for Shigella virulence. Unlike IcsA however, the specific localisation of IcsP on the cell surface is unknown. To determine the distribution of IcsP, a haemagglutinin (HA) epitope was inserted into the non-essential IcsP OM loop 5 using Splicing by Overlap Extension (SOE) PCR, and IcsP(HA) was characterised. Quantum Dot (QD) immunofluorescence (IF) surface labelling of IcsP(HA) was then undertaken. Quantitative fluorescence analysis of S. flexneri 2a 2457T treated with and without tunicaymcin to deplete lipopolysaccharide (LPS) O antigen (Oag) showed that IcsP(HA) was asymmetrically distributed on the surface of septating and non-septating cells, and that this distribution was masked by LPS Oag in untreated cells. Double QD IF labelling of IcsP(HA) and IcsA showed that IcsP(HA) preferentially localised to the new pole of non-septating cells and to the septum of septating cells. The localisation of IcsP(HA) in a rough LPS S. flexneri 2457T strain (with no Oag) was also investigated and a similar distribution of IcsP(HA) was observed. Complementation of the rough LPS strain with rmlD resulted in restored LPS Oag chain expression and loss of IcsP(HA) detection, providing further support for LPS Oag masking of surface proteins. Our data presents for the first time the distribution for the Omptin OM protease IcsP, relative to IcsA, and the effect of LPS Oag masking on its detection.Elizabeth Ngoc Hoa Tran, Matthew Thomas Doyle, Renato Moron

    Defining motility in the Staphylococci

    Get PDF
    The ability of bacteria to move is critical for their survival in diverse environments and multiple ways have evolved to achieve this. Two forms of motility have recently been described for Staphylococcus aureus, an organism previously considered to be non-motile. One form is called spreading, which is a type of sliding motility and the second form involves comet formation, which has many observable characteristics associated with gliding motility. Darting motility has also been observed in Staphylococcus epidermidis. This review describes how motility is defined and how we distinguish between passive and active motility. We discuss the characteristics of the various forms of Staphylococci motility, the molecular mechanisms involved and the potential future research directions

    Dynamic changes in human-gut microbiome in relation to a placebo-controlled anthelminthic trial in Indonesia

    Get PDF
    Background: Microbiome studies suggest the presence of an interaction between the human gut microbiome and soil-transmitted helminth. Upon deworming, a complex interaction between the anthelminthic drug, helminths and microbiome composition might occur. To dissect this, we analyse the changes that take place in the gut bacteria profiles in samples from a double blind placebo controlled trial conducted in an area endemic for soil transmitted helminths in Indonesia. Methods: Either placebo or albendazole were given every three months for a period of one and a half years. Helminth infection was assessed before and at 3 months after the last treatment round. In 150 subjects, the bacteria were profiled using the 454 pyrosequencing. Statistical analysis was performed cross-sectionally at pre-treatment to assess the effect of infection, and at post-treatment to determine the effect of infection and treatment on microbiome composition using the Dirichlet-multinomial regression model. Results: At a phylum level, at pre-treatment, no difference was seen in microbiome composition in terms of relative abundance between helminth-infected and uninfected subjects and at post-treatment, no differences were found in microbiome composition between albendazole and placebo group. However, in subjects who remained infected, there was a significant difference in the microbiome composition of those who had received albendazole and placebo. This difference was largely attributed to alteration of Bacteroidetes. Albendazole was more effective against Ascaris lumbricoides and hookworms but not against Trichuris trichiura, thus in those who remained infected after receiving albendazole, the helminth composition was dominated by T. trichiura. Discussion: We found that overall, albendazole does not affect the microbiome composition. However, there is an interaction between treatment and helminths as in subjects who received albendazole and remained infected there was a significant alteration in Bacteroidetes. This helminth-albendazole interaction needs to be studied further to fully grasp the complexity of the effect of deworming on the microbiome. Trial registration: ISRCTN Registy, ISRCTN83830814

    Stability Estimate for the Nonlinear Seakeeping Problem

    No full text
    • …
    corecore