58 research outputs found

    Inhibition of PC cell-derived growth factor (PCDGF)/granulin-epithelin precursor (GEP) decreased cell proliferation and invasion through downregulation of cyclin D and CDK 4 and inactivation of MMP-2

    Get PDF
    BACKGROUND: PC cell-derived growth factor (PCDGF), also called epithelin/granulin precursor (GEP), is an 88-kDa secreted glycoprotein with the ability to stimulate cell proliferation in an autocrine fashion. In addition, some studies indicated that PCDGF participated in invasion, metastasis and survival of cancer cells by regulating cell migration, adhesion and proliferation. Yet the effects of PCDGF on proliferation and invasion of ovarian cancer cells in vitro and the mechanisms by which PCDGF mediates biological behaviors of ovarian cancer have rarely been reported. In the present study we investigated whether and how PCDGF/GEP mediated cell proliferation and invasion in ovarian cancer. METHODS: PCDGF/GEP expression level in three human ovarian cancer cell lines of different invasion potential were detected by RT-PCR and western blot. Effects of inhibition of PCDGF expression on cell proliferation and invasion capability were determined by MTT assay and Boyden chamber assay. Expression levels of cyclin D1 and CDK4 and MMP-2 activity were evaluated in a pilot study. RESULTS: PCDGF mRNA and protein were expressed at a high level in SW626 and A2780 and at a low level in SKOV3. PCDGF expression level correlated well with malignant phenotype including proliferation and invasion in ovarian cancer cell lines. In addition, the proliferation rate and invasion index decreased after inhibition of PCDGF expression by antisense PCDGF cDNA transfection in SW626 and A2780. Furthermore expression of CyclinD1 and CDK4 were downregulated and MMP-2 was inactivated after PCDGF inhibition in the pilot study. CONCLUSION: PCDGF played an important role in stimulating proliferation and promoting invasion in ovarian cancer. Inhibition of PCDGF decreased proliferation and invasion capability through downregulation of cyclin D1 and CDK4 and inactivation of MMP-2. PCDGF could serve as a potential therapeutic target in ovarian cancer

    Importance of TLR2 on Hepatic Immune and Non-Immune Cells to Attenuate the Strong Inflammatory Liver Response During Trypanosoma cruzi Acute Infection

    Get PDF
    Trypanosoma cruzi, an obligate intracellular protozoan, is the etiological agent of Chagas Disease that represents an important public health burden in Latin America. The infection with this parasite can lead to severe complications in cardiac, liver and gastrointestinal tissue depending on the strain of parasite and host genetics. Recently, we reported a fatal liver injury in T. cruzi infected B6 mice. However, the local immune response against this parasite is poorly understood. This work highlights some of the molecular and cellular mechanisms involved in liver pathology during the acute phase of infection. Using two mouse strains with different genetic backgrounds and responses to infection, B6 and BALB/c, we found that infected B6 mice develop a strong pro-inflammatory environment associated with high TLR9 expression. Conversely, infected BALB/c mice showed a more balanced inflammatory response in liver. Moreover, higher TLR2 and TLR4 expression were found only in hepatocytes from BALB/c. These data emphasize the importance of an adequate integration of signalling between immune and non-immune cells to define the outcome of infection. In addition, the pre-treatment with TLR2-agonist reverts the strong pro-inflammatory environment in T. cruzi infected B6 mice. These results could be useful in the understanding and design of novel immune strategies in controlling liver pathologies

    Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer

    Get PDF
    The IL-6 family of cytokines consists of IL-6, IL-11, IL-27, IL-31, oncostatin M (OSM), leukaemia inhibitory factor (LIF), ciliary neurotrophic factor (CNTF), cardiotrophin 1 (CT-1) and cardiotrophin-like cytokine factor 1 (CLCF1). Membership of this cytokine family is defined by usage of common β-receptor signalling subunits, which activate various intracellular signalling pathways. Each IL-6 family member elicits responses essential to the physiological control of immune homeostasis, haematopoiesis, inflammation, development and metabolism. Accordingly, distortion of these cytokine activities often promotes chronic disease and cancer; the pathological importance of this is exemplified by the successful treatment of certain autoimmune conditions with drugs that target the IL-6 pathway. Here, we discuss the emerging roles for IL-6 family members in infection, chronic inflammation, autoimmunity and cancer and review therapeutic strategies designed to manipulate these cytokines in disease

    Chemokines produced by mesothelial cells: huGRO-α, IP-10, MCP-1 and RANTES

    No full text
    Recently we showed the in vivo relevance of chemokines in cases of bacterial peritonitis in continuous ambulatory peritoneal dialysis (CAPD) patients. Mesothelial cells, the most numerous cells in the peritoneal cavity, are hypothesized to function as a main source of chemokine production. We investigated the time- and dose-dependent expression patterns of four chemokines by mesothelial cells at the mRNA and protein level in response to stimulation with physiological doses of proinflammatory mediators that are present at the site of bacterial inflammation. Besides the chemokines huGRO-α (attractant for neutrophils), MCP-1 and RANTES (monocyte attractants), the expression and production of IP-10 was analysed. Mesothelial cells were cultured and stimulated with either IL-1β, tumour necrosis factor-alpha (TNF-α) or IFN-γ or combinations of these. The time- and dose-dependent mRNA expression of the chemokines was determined by Northern blot analysis and the protein production by ELISA. It was concluded that mesothelial cells could indeed be triggered by the mentioned stimuli to induce mRNA and protein production (huGRO-α and IP-10) or to augment constitutive protein production (MCP-1). However, RANTES mRNA and protein production could only be induced in some cases and only in small amounts. The chemokine response of mesothelial cells was regulated differentially, depending on the stimulus and the chemokine measured. In distinct cases, combination of the stimuli led to synergy in mRNA expression and protein production. The presented in vitro data support our hypothesis that mesothelial cells in vivo are the main source of relevant chemokines in response to proinflammatory mediators, suggesting an important role for mesothelial cells in host defence
    • …
    corecore