8 research outputs found

    Optimization, formulation, and characterization of multiflavonoids-loaded flavanosome by bulk or sequential technique

    No full text
    Govindarajan Karthivashan,1 Mas Jaffri Masarudin,2 Aminu Umar Kura,1 Faridah Abas,3,4 Sharida Fakurazi1,5 1Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, 2Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, 3Department of Food Science, Faculty of Food Science and Technology, 4Laboratory of Natural Products, Institute of Bioscience, 5Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia Abstract: This study involves adaptation of bulk or sequential technique to load multiple flavonoids in a single phytosome, which can be termed as “flavonosome”. Three widely established and therapeutically valuable flavonoids, such as quercetin (Q), kaempferol (K), and apigenin (A), were quantified in the ethyl acetate fraction of Moringa oleifera leaves extract and were commercially obtained and incorporated in a single flavonosome (QKA–phosphatidylcholine) through four different methods of synthesis – bulk (M1) and serialized (M2) co-sonication and bulk (M3) and sequential (M4) co-loading. The study also established an optimal formulation method based on screening the synthesized flavonosomes with respect to their size, charge, polydispersity index, morphology, drug–carrier interaction, antioxidant potential through in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics, and cytotoxicity evaluation against human hepatoma cell line (HepaRG). Furthermore, entrapment and loading efficiency of flavonoids in the optimal flavonosome have been identified. Among the four synthesis methods, sequential loading technique has been optimized as the best method for the synthesis of QKA–phosphatidylcholine flavonosome, which revealed an average diameter of 375.93±33.61 nm, with a zeta potential of -39.07±3.55 mV, and the entrapment efficiency was >98% for all the flavonoids, whereas the drug-loading capacity of Q, K, and A was 31.63%±0.17%, 34.51%±2.07%, and 31.79%±0.01%, respectively. The in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics of the flavonoids indirectly depicts the release kinetic behavior of the flavonoids from the carrier. The QKA-loaded flavonosome had no indication of toxicity toward human hepatoma cell line as shown by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide result, wherein even at the higher concentration of 200 µg/mL, the flavonosomes exert >85% of cell viability. These results suggest that sequential loading technique may be a promising nanodrug delivery system for loading multiflavonoids in a single entity with sustained activity as an antioxidant, hepatoprotective, and hepatosupplement candidate. Keywords: quercetin, kaempferol, apigenin, phytosome, antioxidant, HepaRG cell lin

    Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [14C]-doxorubicin

    No full text
    Mas Jaffri Masarudin,1 Suzanne M Cutts,2 Benny J Evison,3 Don R Phillips,2 Paul J Pigram4 1Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia; 2Department of Biochemistry, La Trobe University, Melbourne, Victoria, Australia; 3Department of Chemical Biology and Therapeutics, St Jude Children's Hospital, Memphis, TN, USA; 4Department of Physics, La Trobe University, Melbourne, Victoria, Australia Abstract: Development of parameters for the fabrication of nanosized vectors is pivotal for its successful administration in therapeutic applications. In this study, homogeneously distributed chitosan nanoparticles (CNPs) with diameters as small as 62 nm and a polydispersity index (PDI) of 0.15 were synthesized and purified using a simple, robust method that was highly reproducible. Nanoparticles were synthesized using modified ionic gelation of the chitosan polymer with sodium tripolyphosphate. Using this method, larger aggregates were mechanically isolated from single particles in the nanoparticle population by selective efficient centrifugation. The presence of disaggregated monodisperse nanoparticles was confirmed using atomic force microscopy. Factors such as anions, pH, and concentration were found to affect the size and stability of nanoparticles directly. The smallest nanoparticle population was ~62 nm in hydrodynamic size, with a low PDI of 0.15, indicating high particle homogeneity. CNPs were highly stable and retained their monodisperse morphology in serum-supplemented media in cell culture conditions for up to 72 hours, before slowly degrading over 6 days. Cell viability assays demonstrated that cells remained viable following a 72-hour exposure to 1 mg/mL CNPs, suggesting that the nanoparticles are well tolerated and highly suited for biomedical applications. Cellular uptake studies using fluorescein isothiocyanate-labeled CNPs showed that cancer cells readily accumulate the nanoparticles 30 minutes posttreatment and that nanoparticles persisted within cells for up to 24 hours posttreatment. As a proof of principle for use in anticancer therapeutic applications, a [14C]-radiolabeled form of the anticancer agent doxorubicin was efficiently encapsulated within the CNP, confirming the feasibility of using this system as a drug delivery vector. Keywords: nanobiotechnology, drug delivery, chitosan, chitosan nanoparticles, doxorubicin, FIT

    In vitro cellular localization and efficient accumulation of fluorescently tagged biomaterials from monodispersed chitosan nanoparticles for elucidation of controlled release pathways for drug delivery systems

    No full text
    Ummu Afiqah Hassan,1 Mohd Zobir Hussein,2 Noorjahan Banu Alitheen,1 Syazaira Arham Yahya Ariff,1 Mas Jaffri Masarudin1,2 1Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 2Material Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia Background: Inefficient cellular delivery and poor intracellular accumulation are major drawbacks towards achieving favorable therapeutic responses from many therapeutic drugs and biomolecules. To tackle this issue, nanoparticle-mediated delivery vectors have been aptly explored as a promising delivery strategy capable of enhancing the cellular localization of biomolecules and improve their therapeutic efficacies. However, the dynamics of intracellular biomolecule release and accumulation from such nanoparticle systems has currently remained scarcely studied. Objectives: The objective of this study was to utilize a chitosan-based nanoparticle system as the delivery carrier for glutamic acid, a model for encapsulated biomolecules to visualize the in vitro release and accumulation of the encapsulated glutamic acid from chitosan nanoparticle (CNP) systems. Methods: CNP was synthesized via ionic gelation routes utilizing tripolyphosphate (TPP) as a cross-linker. In order to track glutamic acid release, the glutamic acid was fluorescently-labeled with fluorescein isothiocyanate prior encapsulation into CNP. Results: Light Scattering data concluded the successful formation of small-sized and monodispersed CNP at a specific volume ratio of chitosan to TPP. Encapsulation of glutamic acid as a model cargo into CNP led to an increase in particle size to >100 nm. The synthesized CNP exhibited spherical shape under Electron Microscopy. The formation of CNP was reflected by the reduction in free amine groups of chitosan following ionic crosslinking reactions. The encapsulation of glutamic acid was further confirmed by Fourier Transform Infrared (FTIR) analysis. Cell viability assay showed 70% cell viability at the maximum concentration of 0.5 mg/mL CS and 0.7 mg/mL TPP used, indicating the low inherent toxicity property of this system. In vitro release study using fluorescently-tagged glutamic acids demonstrated the release and accumulation of the encapsulated glutamic acids at 6 hours post treatment. A significant accumulation was observed at 24 hours and 48 hours later. Flow cytometry data demonstrated a gradual increase in intracellular fluorescence signal from 30 minutes to 48 hours post treatment with fluorescently-labeled glutamic acids encapsulated CNP. Conclusion: These results therefore suggested the potential of CNP system towards enhancing the intracellular delivery and release of the encapsulated glutamic acids. This CNP system thus may serves as a potential candidate vector capable to improve the therapeutic efficacy for drugs and biomolecules in medical as well as pharmaceutical applications through the enhanced intracellular release and accumulation of the encapsulated cargo. Keywords: drug delivery, nanotechnology, chitosan, glutamic acid, FIT

    Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [14C]-doxorubicin [Corrigendum]

    No full text
    Masarudin MJ, Cutts SM, Evison BJ et al. Nanotechnol Sci Appl. 2015;8:67–80The authors advise that Professor Geoffrey A Pietersz was erroneously omitted from the original author and affiliation list, the list should have been:Mas Jaffri Masarudin1Suzanne M Cutts2Geoffrey A Pietersz3Benny J Evison4Don R Phillips2Paul J Pigram51Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia; 2Department of Biochemistry, La Trobe University, Melbourne, Victoria, Australia; 3Bioorganic and Medicinal Chemistry Laboratory, Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia; 4Department of Chemical Biology and Therapeutics, St Jude Children’s Hospital, Memphis, TN, USA; 5Department of Physics, La Trobe University, Melbourne, Victoria, AustraliaThe Acknowledgment section should have contained the statement: This work was also supported by a research grant from Cancer Council Victoria.Read the original articl
    corecore