44 research outputs found

    Pulmonary contusion in a collegiate diver: a case report

    Get PDF
    Abstract Introduction Pulmonary contusions typically occur after high-energy trauma and have rarely been reported as occurring during participation in sports. This is the first reported case of a pulmonary contusion occurring in a sport other than football. Case Presentation A 19-year-old Caucasian man impacted the water awkwardly after diving off a one-meter springboard. He complained of chest discomfort and produced immediate hemoptysis. Computed tomography confirmed the diagnosis of pulmonary contusion. The athlete recovered without complications and returned to activity one week after injury. Conclusion Immediate hemoptysis following blunt chest trauma during sports activity may indicate an underlying pulmonary contusion. No specific guidelines exist for return to athletic competition following pulmonary contusion, but a progressive return to activities once symptoms resolve appears to be a reasonable approach.</p

    Experimental Assessment of the Role of Acetaldehyde in Alcoholic Cardiomyopathy

    Get PDF
    Alcoholism is one of the major causes of non-ischemic heart damage. The myopathic state of the heart due to alcohol consumption, namely alcoholic cardiomyopathy, is manifested by cardiac hypertrophy, compromised ventricular contractility and cardiac output. Several mechanisms have been postulated for alcoholic cardiomyopathy including oxidative damage, accumulation of triglycerides, altered fatty acid extraction, decreased myofilament Ca(2+ )sensitivity, and impaired protein synthesis. Despite intensive efforts to unveil the mechanism and ultimate toxin responsible for alcohol-induced cardiac toxicity, neither has been clarified thus far. Primary candidates for the specific toxins are ethanol, its first and major metabolic product - acetaldehyde (ACA) and fatty acid ethyl esters. Evidence from our lab suggests that ACA directly impairs cardiac function and promotes lipid peroxidation resulting in oxidative damage. The ACA-induced cardiac contractile depression may be reconciled with inhibitors of Cytochrome P-450 oxidase, xanthine oxidase and lipid peroxidation Unfortunately, the common methods to investigate the toxicity of ACA have been hampered by the fact that direct intake of ACA is toxic and unsuitable for chronic study, which is unable to provide direct evidence of direct cardiac toxicity for ACA. In order to overcome this obstacle associated with the chemical properties of ACA, our laboratory has used the chronic ethanol feeding model in transgenic mice with cardiac over-expression of alcohol dehydrogenase (ADH) and an in vitro ventricular myocyte culture model. The combination of both in vivo and in vitro approaches allows us to evaluate the role of ACA in ethanol-induced cardiac toxicity and certain cellular signaling pathways leading to alcoholic cardiomyopathy

    Phytodiversity of temperate permanent grasslands: ecosystem services for agriculture and livestock management for diversity conservation

    Full text link

    V

    No full text
    corecore