10,304 research outputs found
Cosmological Adaptive Mesh Refinement
We describe a grid-based numerical method for 3D hydrodynamic cosmological
simulations which is adaptive in space and time and combines the best features
of higher order--accurate Godunov schemes for Eulerian hydrodynamics with
adaptive particle--mesh methods for collisionless particles. The basis for our
method is the structured adaptive mesh refinement (AMR) algorithm of Berger &
Collela (1989), which we have extended to cosmological hydro + N-body
simulations. The resulting multiscale hybrid method is a powerful alternative
to particle-based methods in current use. The choices we have made in
constructing this algorithm are discussed, and its performance on the Zeldovich
pancake test problem is given. We present a sample application of our method to
the problem of first structure formation. We have achieved a spatial dynamic
range in a 3D multispecies gas + dark matter
calculation, which is sufficient to resolve the formation of primordial
protostellar cloud cores starting from linear matter fluctuations in an
expanding FRW universe.Comment: 14 pages, 3 figures (incl. one large color PS) to appear in
"Numerical Astrophysics 1998", eds. S. Miyama & K. Tomisaka, Tokyo, March
10-13, 199
Neutralino reconstruction at the LHC from decay-frame kinematics
Decay-frame Kinematics (DK) has previously been introduced as a technique to
reconstruct neutralino masses from their three-body decays to leptons. This
work is an extension to the case of two-body decays through on-shell sleptons,
with Monte Carlo simulation of LHC collisions demonstrating reconstruction of
neutralino masses for the SPS1a benchmark point
Road Context-aware Intrusion Detection System for Autonomous Cars
Security is of primary importance to vehicles. The viability of performing
remote intrusions onto the in-vehicle network has been manifested. In regard to
unmanned autonomous cars, limited work has been done to detect intrusions for
them while existing intrusion detection systems (IDSs) embrace limitations
against strong adversaries. In this paper, we consider the very nature of
autonomous car and leverage the road context to build a novel IDS, named Road
context-aware IDS (RAIDS). When a computer-controlled car is driving through
continuous roads, road contexts and genuine frames transmitted on the car's
in-vehicle network should resemble a regular and intelligible pattern. RAIDS
hence employs a lightweight machine learning model to extract road contexts
from sensory information (e.g., camera images and distance sensor values) that
are used to generate control signals for maneuvering the car. With such ongoing
road context, RAIDS validates corresponding frames observed on the in-vehicle
network. Anomalous frames that substantially deviate from road context will be
discerned as intrusions. We have implemented a prototype of RAIDS with neural
networks, and conducted experiments on a Raspberry Pi with extensive datasets
and meaningful intrusion cases. Evaluations show that RAIDS significantly
outperforms state-of-the-art IDS without using road context by up to 99.9%
accuracy and short response time.Comment: This manuscript presents an intrusion detection system that makes use
of road context for autonomous car
Pore-scale intermittent velocity structure underpinning anomalous transport through 3-D porous media
The LHC Phenomenology of Vectorlike Confinement
We investigate in detail the LHC phenomenology of "vectorlike confinement",
where the Standard Model is augmented by a new confining gauge interaction and
new light fermions that carry vectorlike charges under both the Standard Model
and the new gauge group. If the new interaction confines at the TeV scale, this
framework gives rise to a wide range of exotic collider signatures such as the
production of a vector resonance that decays to a pair of collider-stable
charged massive particles (a "di-CHAMP" resonance), to a pair of
collider-stable massive colored particles (a "di-R-hadron resonance), to
multiple photons, s and s via two intermediate scalars, and/or to
multi-jet final states. To study these signals at the LHC, we set up two
benchmark models: one for the di-CHAMP and multi-photon signals, and the other
for the di-R-hadron and multijet signals. For the di-CHAMP/multi-photon model,
Standard Model backgrounds are negligible, and we show that a full
reconstruction of the spectrum is possible, providing powerful evidence for
vectorlike confinement. For the di-R-hadron/multijet model, we point out that
in addition to the di-R-hadron signal, the rate of the production of four
R-hadrons can also be sizable at the LHC. This, together with the multi-jet
signals studied in earlier work, makes it possible to single out vectorlike
confinement as the underlying dynamics.Comment: 32 pages, 28 figures. Several typos fixed, one paragraph added
elaborating choice of benchmarks. Version accepted by JHEP
Enhanced mitochondrial superoxide scavenging does not Improve muscle insulin action in the high fat-fed mouse
Improving mitochondrial oxidant scavenging may be a viable strategy for the treatment of insulin resistance and diabetes. Mice overexpressing the mitochondrial matrix isoform of superoxide dismutase (sod2(tg) mice) and/or transgenically expressing catalase within the mitochondrial matrix (mcat(tg) mice) have increased scavenging of O2(Λ-) and H2O2, respectively. Furthermore, muscle insulin action is partially preserved in high fat (HF)-fed mcat(tg) mice. The goal of the current study was to test the hypothesis that increased O2(Λ-) scavenging alone or in combination with increased H2O2 scavenging (mtAO mice) enhances in vivo muscle insulin action in the HF-fed mouse. Insulin action was examined in conscious, unrestrained and unstressed wild type (WT), sod2(tg), mcat(tg) and mtAO mice using hyperinsulinemic-euglycemic clamps (insulin clamps) combined with radioactive glucose tracers following sixteen weeks of normal chow or HF (60% calories from fat) feeding. Glucose infusion rates, whole body glucose disappearance, and muscle glucose uptake during the insulin clamp were similar in chow- and HF-fed WT and sod2(tg) mice. Consistent with our previous work, HF-fed mcat(tg) mice had improved muscle insulin action, however, an additive effect was not seen in mtAO mice. Insulin-stimulated Akt phosphorylation in muscle from clamped mice was consistent with glucose flux measurements. These results demonstrate that increased O2(Λ-) scavenging does not improve muscle insulin action in the HF-fed mouse alone or when coupled to increased H2O2 scavenging
Pure-glue hidden valleys through the Higgs portal
We consider the possibility that the Higgs boson can act as a link to a
hidden sector in the context of pure-glue hidden valley models. In these models
the standard model is weakly coupled, through loops of heavy messengers fields,
to a hidden sector whose low energy dynamics is described by a pure-Yang-Mills
theory. Such a hidden sector contains several metastable hidden glueballs. In
this work we shall extend earlier results on hidden valleys to include
couplings of the messengers to the standard model Higgs sector. The effective
interactions at one-loop couple the hidden gluons to the standard model
particles through the Higgs sector. These couplings in turn induce hidden
glueball decays to fermion pairs, or cascade decays with multiple Higgs
emission. The presence of effective operators of different mass dimensions,
often competing with each other, together with a great diversity of states,
leads to a great variability in the lifetimes and decay modes of the hidden
glueballs. We find that most of the operators considered in this paper are not
heavily constrained by precision electroweak physics, therefore leaving plenty
of room in the parameter space to be explored by the future experiments at the
LHC.Comment: 44 pages, 16 figures. Major revision for JHEP, corrected an error in
Eq. 5.1, comments adde
Regulation of Transgene Expression in Tumor Cells by Exploiting Endogenous Intracellular Signals
Recently, we have proposed a novel strategy for a cell-specific gene therapy system based on responses to intracellular signals. In this system, an intracellular signal that is specifically and abnormally activated in the diseased cells is used for the activation of transgene expression. In this study, we used protein kinase C (PKC)Ξ± as a trigger to activate transgene expression. We prepared a PKCΞ±-responsive polymer conjugate [PPC(S)] and a negative control conjugate [PPC(A)], in which the phosphorylation site serine (Ser) was replaced with alanine (Ala). The phosphorylation for polymer/DNA complexes was determined with a radiolabel assay using [Ξ³-32P]ATP. PPC(S)/DNA complexes were phosphorylated by the addition of PKCΞ±, but no phosphorylation of the PPC(A)/DNA complex was observed. Moreover, after microinjection of polymer/GFP-encoding DNA complexes into HepG2 cells at cation/anion (C/A) ratios of 0.5 to 2.0, significant expression of GFP was observed in all cases using PPC(S)/DNA complexes, but no GFP expression was observed in the negative control PPC(A)/DNA complex-microinjected cells at C/A ratios of 1.0 and 2.0. On the other hand, GFP expression from PPC(S)/DNA complexes was completely suppressed in cells pretreated with PKCΞ± inhibitor (Ro31-7549). These results suggest that our gene regulation system can be used for tumor cell-specific expression of a transgene in response to PKCΞ± activity
Export of functional Streptomyces coelicolor alditol oxidase to the periplasm or cell surface of Escherichia coli and its application in whole-cell biocatalysis
Streptomyces coelicolor A3(2) alditol oxidase (AldO) is a soluble monomeric flavoprotein in which the flavin cofactor is covalently linked to the polypeptide chain. AldO displays high reactivity towards different polyols such as xylitol and sorbitol. These characteristics make AldO industrially relevant, but full biotechnological exploitation of this enzyme is at present restricted by laborious and costly purification steps. To eliminate the need for enzyme purification, this study describes a whole-cell AldO biocatalyst system. To this end, we have directed AldO to the periplasm or cell surface of Escherichia coli. For periplasmic export, AldO was fused to endogenous E. coli signal sequences known to direct their passenger proteins into the SecB, signal recognition particle (SRP), or Twin-arginine translocation (Tat) pathway. In addition, AldO was fused to an ice nucleation protein (INP)-based anchoring motif for surface display. The results show that Tat-exported AldO and INP-surface-displayed AldO are active. The Tat-based system was successfully employed in converting xylitol by whole cells, whereas the use of the INP-based system was most likely restricted by lipopolysaccharide LPS in wild-type cells. It is anticipated that these whole-cell systems will be a valuable tool for further biological and industrial exploitation of AldO and other cofactor-containing enzymes.
- β¦