197 research outputs found

    Estimation of groundwater storage from seismic data using deep learning

    Get PDF
    We investigate the feasibility of the use of convolutional neural networks to estimate the amount of groundwater stored in the aquifer and delineate water-table level from active-source seismic data. The seismic data to train and test the neural networks are obtained by solving wave propagation in a coupled poroviscoelastic-elastic media. A discontinuous Galerkin method is used to model wave propagation whereas a deep convolutional neural network is used for the parameter estimation problem. In the numerical experiment, the primary unknowns, the amount of stored groundwater and water-table level, are estimated, while the remaining parameters, assumed to be of less of interest, are successfully marginalized in the convolutional neural networks-based solution

    Flexibility of habitat use in novel environments: insights from a translocation experiment with lesser black-backed gulls

    Get PDF
    Being faced with unknown environments is a concomitant challenge of species' range expansions. Strategies to cope with this challenge include the adaptation to local conditions and a flexibility in resource exploitation. The gulls of the Larus argentatus-fuscus-cachinnans group form a system in which ecological flexibility might have enabled them to expand their range considerably, and to colonize urban environments. However, on a population level both flexibility and local adaptation lead to signatures of differential habitat use in different environments, and these processes are not easily distinguished. Using the lesser black-backed gull (Larus fuscus) as a system, we put both flexibility and local adaptation to a test. We compare habitat use between two spatially separated populations, and use a translocation experiment duringwhich individuals were released into novel environment. The experiment revealed that on a population-level flexibility best explains the differences in habitat use between the two populations. We think that our results suggest that the range expansion and huge success of this species complex could be a result of its broad ecological niche and flexibility in the exploitation of resources. However, this also advises caution when using species distribution models to extrapolate habitat use across space

    Molecular characterization and antiviral activity test of common drugs against echovirus 18 isolated in Korea

    Get PDF
    Genetic diversity and antiviral activity for five common antiviral drugs of echovirus (ECV) 5 isolated in Korea have been described. The present study extended these tests to a Korean ECV 18 isolate. An outbreak of aseptic meningitis caused by the ECV 18 isolate was reported in Korea in 2005, marking the first time this virus had been identified in the country since enterovirus surveillance began in 1993. Using a sample isolated from stool specimen of a 5-year-old male patient with aseptic meningitis, the complete genome sequence was obtained and was compared it with the Metcalf prototype strain. Unlike the ECV5 isolate, the 3' untranslated region had the highest identity value (94.2%) at the nucleotide level, while, at the amino acid level, the P2 region displayed the highest identity value (96.9%). These two strains shared all cleavage sites, with the exception of the 2B/2C site, which was RQ/NN in the Metcalf strain but RQ/NS in the Korean ECV 18 isolate. In Vero cells infected with the Korean ECV 18 isolate, no cytotoxicity was observed in the presence of azidothymidine, acyclovir, amantadine, lamivudine, or ribavirin, when the drugs were administered at a CC50 value >100 μg/mL. Of the five drugs, only amantadine (IC50: 4.97 ± 0.77 μg/mL, TI: 20.12) and ribavirin (IC50: 7.63 ± 0.87 μg/mL, TI: 13.11) had any antiviral activity against the Korean ECV 18 isolate in the five antiviral drugs. These antiviral activity effects were similar with results of the Korean ECV5 isolate

    Safety assessment of inhaled xylitol in mice and healthy volunteers

    Get PDF
    BACKGROUND: Xylitol is a 5-carbon sugar that can lower the airway surface salt concentration, thus enhancing innate immunity. We tested the safety and tolerability of aerosolized iso-osmotic xylitol in mice and human volunteers. METHODS: This was a prospective cohort study of C57Bl/6 mice in an animal laboratory and healthy human volunteers at the clinical research center of a university hospital. Mice underwent a baseline methacholine challenge, exposure to either aerosolized saline or xylitol (5% solution) for 150 minutes and then a follow-up methacholine challenge. The saline and xylitol exposures were repeated after eosinophilic airway inflammation was induced by sensitization and inhalational challenge to ovalbumin. Normal human volunteers underwent exposures to aerosolized saline (10 ml) and xylitol, with spirometry performed at baseline and after inhalation of 1, 5, and 10 ml. Serum osmolarity and electrolytes were measured at baseline and after the last exposure. A respiratory symptom questionnaire was administered at baseline, after the last exposure, and five days after exposure. In another group of normal volunteers, bronchoalveolar lavage (BAL) was done 20 minutes and 3 hours after aerosolized xylitol exposure for levels of inflammatory markers. RESULTS: In naïve mice, methacholine responsiveness was unchanged after exposures to xylitol compared to inhaled saline (p = 0.49). There was no significant increase in Penh in antigen-challenged mice after xylitol exposure (p = 0.38). There was no change in airway cellular response after xylitol exposure in naïve and antigen-challenged mice. In normal volunteers, there was no change in FEV1 after xylitol exposures compared with baseline as well as normal saline exposure (p = 0.19). Safety laboratory values were also unchanged. The only adverse effect reported was stuffy nose by half of the subjects during the 10 ml xylitol exposure, which promptly resolved after exposure completion. BAL cytokine levels were below the detection limits after xylitol exposure in normal volunteers. CONCLUSIONS: Inhalation of aerosolized iso-osmotic xylitol was well-tolerated by naïve and atopic mice, and by healthy human volunteers

    Psychological Stress-Induced, IDO1-Dependent Tryptophan Catabolism: Implications on Immunosuppression in Mice and Humans

    Get PDF
    It is increasingly recognized that psychological stress influences inflammatory responses and mood. Here, we investigated whether psychological stress (combined acoustic and restraint stress) activates the tryptophan (Trp) catabolizing enzyme indoleamine 2,3-dioxygenase 1(IDO1) and thereby alters the immune homeostasis and behavior in mice. We measured IDO1 mRNA expression and plasma levels of Trp catabolites after a single 2-h stress session and in repeatedly stressed (4.5-days stress, 2-h twice a day) naïve BALB/c mice. A role of cytokines in acute stress-induced IDO1 activation was studied after IFNγ and TNFα blockade and in IDO1−/− mice. RU486 and 1-Methyl-L-tryptophan (1-MT) were used to study role of glucocorticoids and IDO1 on Trp depletion in altering the immune and behavioral response in repeatedly stressed animals. Clinical relevance was addressed by analyzing IDO1 activity in patients expecting abdominal surgery. Acute stress increased the IDO1 mRNA expression in brain, lung, spleen and Peyer's patches (max. 14.1±4.9-fold in brain 6-h after stress) and resulted in a transient depletion of Trp (−25.2±6.6%) and serotonin (−27.3±4.6%) from the plasma measured 6-h after stress while kynurenine levels increased 6-h later (11.2±9.3%). IDO1 mRNA up-regulation was blocked by anti-TNFα and anti-IFNγ treatment. Continuous IDO1 blockade by 1-MT but not RU486 treatment normalized the anti-bacterial defense and attenuated increased IL-10 inducibility in splenocytes after repeated stress as it reduced the loss of body weight and behavioral alterations. Moreover, kynurenic acid which remained increased in 1-MT treated repeatedly stressed mice was identified to reduce the TNFα inducibility of splenocytes in vitro and in vivo. Thus, psychological stress stimulates cytokine-driven IDO1 activation and Trp depletion which seems to have a central role for developing stress-induced immunosuppression and behavioral alteration. Since patients showed Trp catabolism already prior to surgery, IDO is also a possible target enzyme for humans modulating immune homeostasis and mood

    Influence of Socioeconomic Status Trajectories on Innate Immune Responsiveness in Children

    Get PDF
    Lower socioeconomic status (SES) is consistently associated with poor health, yet little is known about the biological mechanisms underlying this inequality. In children, we examined the impact of early-life SES trajectories on the intensity of global innate immune activation, recognizing that excessive activation can be a precursor to inflammation and chronic disease.Stimulated interleukin-6 production, a measure of immune responsiveness, was analyzed ex vivo for 267 Canadian schoolchildren from a 1995 birth cohort in Manitoba, Canada. Childhood SES trajectories were determined from parent-reported housing data using a longitudinal latent-class modeling technique. Multivariate regression was conducted with adjustment for potential confounders.SES was inversely associated with innate immune responsiveness (p=0.003), with persistently low-SES children exhibiting responses more than twice as intense as their high-SES counterparts. Despite initially lower SES, responses from children experiencing increasing SES trajectories throughout childhood were indistinguishable from high-SES children. Low-SES effects were strongest among overweight children (p<0.01). Independent of SES trajectories, immune responsiveness was increased in First Nations children (p<0.05) and urban children with atopic asthma (p<0.01).These results implicate differential immune activation in the association between SES and clinical outcomes, and broadly imply that SES interventions during childhood could limit or reverse the damaging biological effects of exposure to poverty during the preschool years

    The developmental impact of prenatal stress, prenatal dexamethasone and postnatal social stress on physiology, behaviour and neuroanatomy of primate offspring: studies in rhesus macaque and common marmoset

    Get PDF
    RATIONALE: Exposure of the immature mammalian brain to stress factors, including stress levels of glucocorticoids, either prenatally or postnatally, is regarded as a major regulatory factor in short- and long-term brain function and, in human, as a major aetiological factor in neuropsychiatric disorders. Experimental human studies are not feasible and animal studies are required to demonstrate causality and elucidate mechanisms. A number of studies have been conducted and reviewed in rodents but there are relatively few studies in primates. OBJECTIVES: Here we present an overview of our published studies and some original data on the effects of: (1) prenatal stress on hypothalamic-pituitary-adrenal (HPA) re/activity and hippocampus neuroanatomy in juvenile-adolescent rhesus macaques; (2) prenatal dexamethasone (DEX) on HPA activity, behaviour and prefrontal cortex neuroanatomy in infant-adolescent common marmosets; (3) postnatal daily parental separation stress on HPA re/activity, behaviour, sleep and hippocampus and prefrontal cortex neuroanatomy in infant-adolescent common marmoset. RESULTS: Prenatal stress increased basal cortisol levels and reduced neurogenesis in macaque. Prenatal DEX was without effect on HPA activity and reduced social play and skilled motor behaviour in marmoset. Postnatal social stress increased basal cortisol levels, reduced social play, increased awakening and reduced hippocampal glucocorticoid and mineralocorticoid receptor expression in marmoset. CONCLUSIONS: Perinatal stress-related environmental events exert short- and long-term effects on HPA function, behaviour and brain status in rhesus macaque and common marmoset. The mechanisms mediating the enduring effects remain to be elucidated, with candidates including increased basal HPA function and epigenetic programming
    corecore