2,678 research outputs found

    Bond-order correlation energies for small Si-containing molecules compared with ab initio results from low-order Moller-Plesset perturbation theory

    Full text link
    The present study of small molecules containing silicon has been motivated by (a) the considerable interest being shown currently in the kinetics and reactivity of such molecules, and (b) the biotechnological potential of silicon-derivate surfaces as substrates in the adsorption of, for instance, amino acids and proteins. Therefore, we have studied by (i) a semi-empirical approach and (ii) an ab initio procedure employing low-order Moller-Plesset perturbation theory, the molecular correlation energies of some neutral closed and open shell silicon-containing molecules in the series SiXnYm. Procedure (i) is shown to have particular merit for the correlation of the ionic members studied in the above series, while the ab initio procedures employed come into their own for neutral species.Comment: Mol. Phys., to be publishe

    The photoionization dynamics of the three structural isomers of dichloroethene

    Get PDF
    Using tunable vacuum-UV radiation from a synchrotron, the threshold photoelectron spectrum, threshold photoelectron photoion coincidence spectrum and ion breakdown diagram of the 1,1, cis-1,2 and trans-1,2 isomers of C2_2H2_2Cl2_2 have been recorded in the range 9-23 eV. The energies of the peaks in the threshold photoelectron spectrum are in good agreement with outer-valence Greens function caculations. The major difference between the isomers, both predicted and observed experimentally is that the F and G states of C2_2H2_2Cl2+_2^+ are approximately degenerate for 1,1 and trans-1,2, but well separated for the cis-1,2 isomer. The ground and low-lying valence states of C2_2H2_2Cl2+_2^+ are bound, with higher-lying states dissociating to C2_2H2_2Cl+^+ or C2_2H2+_2^+. The translational kinetic energy release into C2_2H2_2Cl+^+ + Cl is determined as a function of energy. Isolated-state behaviour for the low-lying electronic states of C2_2H2_2Cl2+_2^+ becomes more statistical as the energy increases

    EPR spectroscopy and molecular dynamics modelling: a combined approach to study liquid crystals

    Get PDF
    This review outlines the recent theoretical and computational developments for the prediction of motional electron paramagnetic resonance spectra with introduced spin probes from molecular dynamics simulations. The methodology is illustrated with applications to thermotropic and lyotropic liquid crystals at different phases and aggregate states

    The Emerging Scholarly Brain

    Full text link
    It is now a commonplace observation that human society is becoming a coherent super-organism, and that the information infrastructure forms its emerging brain. Perhaps, as the underlying technologies are likely to become billions of times more powerful than those we have today, we could say that we are now building the lizard brain for the future organism.Comment: to appear in Future Professional Communication in Astronomy-II (FPCA-II) editors A. Heck and A. Accomazz

    Honey bee foraging distance depends on month and forage type

    Get PDF
    To investigate the distances at which honey bee foragers collect nectar and pollen, we analysed 5,484 decoded waggle dances made to natural forage sites to determine monthly foraging distance for each forage type. Firstly, we found significantly fewer overall dances made for pollen (16.8 %) than for non-pollen, presumably nectar (83.2 %; P < 2.2 × 10−23). When we analysed distance against month and forage type, there was a significant interaction between the two factors, which demonstrates that in some months, one forage type is collected at farther distances, but this would reverse in other months. Overall, these data suggest that distance, as a proxy for forage availability, is not significantly and consistently driven by need for one type of forage over the other

    A close halo of large transparent grains around extreme red giant stars

    Full text link
    Intermediate-mass stars end their lives by ejecting the bulk of their envelope via a slow dense wind back into the interstellar medium, to form the next generation of stars and planets. Stellar pulsations are thought to elevate gas to an altitude cool enough for the condensation of dust, which is then accelerated by radiation pressure from starlight, entraining the gas and driving the wind. However accounting for the mass loss has been a problem due to the difficulty in observing tenuous gas and dust tens of milliarcseconds from the star, and there is accordingly no consensus on the way sufficient momentum is transferred from the starlight to the outflow. Here, we present spatially-resolved, multi-wavelength observations of circumstellar dust shells of three stars on the asymptotic giant branch of the HR diagram. When imaged in scattered light, dust shells were found at remarkably small radii (<~ 2 stellar radii) and with unexpectedly large grains (~300 nm radius). This proximity to the photosphere argues for dust species that are transparent to starlight and therefore resistant to sublimation by the intense radiation field. While transparency usually implies insufficient radiative pressure to drive a wind, the radiation field can accelerate these large grains via photon scattering rather than absorption - a plausible mass-loss mechanism for lower-amplitude pulsating stars.Comment: 13 pages, 1 table, 6 figure
    corecore