20 research outputs found

    Recent advances in alcohol-induced adduct formation

    No full text
    This article presents the proceedings of a symposium presented at the ISBRA 12th World Congress on Biomedical Alcohol Research, held in Heidelberg/Mannheim, Germany, September 29 through October 2, 2004. The organizers of the symposium were Simon Worrall and Victor Preedy, and the symposium was chaired by Onni NiemelÀ and Geoffrey Thiele. The presentations scheduled for this symposium were (1) Adduct chemistry and mechanisms of adduct formation, by Thomas L. Freeman; (2) Malondialdehyde- acetaldehyde adducts: the 2004 update, by Geoffrey Thiele; (3) Adduct formation in the liver, by Simon Worrall; (4) Protein adducts in alcoholic cardiomyopathy, by Onni NiemelÀ; and (5) Alcoholic skeletal muscle myopathy: a role for protein adducts, by Victor R. Preedy

    Evidence that endogenous formaldehyde produces immunogenic and atherogenic adduct epitopes

    Get PDF
    Abstract Endogenous formaldehyde is abundantly present in our bodies, at around 100 ”M under normal conditions. While such high steady state levels of formaldehyde may be derived by enzymatic reactions including oxidative demethylation/deamination and myeloperoxidation, it is unclear whether endogenous formaldehyde can initiate and/or promote diseases in humans. Here, we show that fluorescent malondialdehyde-formaldehyde (M2FA)-lysine adducts are immunogenic without adjuvants in mice. Natural antibody titers against M2FA are elevated in atherosclerosis-prone mice. Staining with an antibody against M2FA demonstrated that M2FA is present in plaque found on the aortic valve of ApoE −/− mice. To mimic inflammation during atherogenesis, human myeloperoxidase was incubated with glycine, H2O2, malondialdehyde, and a lysine analog in PBS at a physiological temperature, which resulted in M2FA generation. These results strongly suggest that the 1,4-dihydropyridine-type of lysine adducts observed in atherosclerosis lesions are likely produced by endogenous formaldehyde and malondialdehyde with lysine. These highly fluorescent M2FA adducts may play important roles in human inflammatory and degenerative diseases
    corecore