14 research outputs found
Structural analysis of multicellular organisms with cryo-electron tomography
We developed a method for visualizing tissues from multicellular organisms using cryo-electron tomography. Our protocol involves vitrifying samples with high-pressure freezing, thinning them with cryo-FIB-SEM (focused-ion-beam scanning electron microscopy) and applying fiducial gold markers under cryogenic conditions to the lamellae post-milling. We applied this protocol to acquire tomograms of vitrified Caenorhabditis elegans embryos and worms, which showed the intracellular organization of selected tissues at particular developmental stages in otherwise intact specimens
A helical assembly of human ESCRT-I scaffolds reverse-topology membrane scission.
The ESCRT complexes drive membrane scission in HIV-1 release, autophagosome closure, multivesicular body biogenesis, cytokinesis, and other cell processes. ESCRT-I is the most upstream complex and bridges the system to HIV-1 Gag in virus release. The crystal structure of the headpiece of human ESCRT-I comprising TSG101-VPS28-VPS37B-MVB12A was determined, revealing an ESCRT-I helical assembly with a 12-molecule repeat. Electron microscopy confirmed that ESCRT-I subcomplexes form helical filaments in solution. Mutation of VPS28 helical interface residues blocks filament formation in vitro and autophagosome closure and HIV-1 release in human cells. Coarse-grained (CG) simulations of ESCRT assembly at HIV-1 budding sites suggest that formation of a 12-membered ring of ESCRT-I molecules is a geometry-dependent checkpoint during late stages of Gag assembly and HIV-1 budding and templates ESCRT-III assembly for membrane scission. These data show that ESCRT-I is not merely a bridging adaptor; it has an essential scaffolding and mechanical role in its own right
Preparation of proteins and macromolecular assemblies for cryo-electron microscopy
Cryo-electron microscopy has become popular as the penultimate step on the road to structure determination for many proteins and macromolecular assemblies. The process of obtaining high-resolution images of a purified biomolecular complex in an electron microscope often follows a long, and in many cases exhaustive screening process in which many iterative rounds of protein purification are employed and the sample preparation procedure progressively re-evaluated in order to improve the distribution of particles visualized under the electron microscope, and thus\ua0maximize the opportunity for high-resolution structure determination. Typically, negative stain electron microscopy is employed to obtain a preliminary assessment of the sample quality, followed by cryo-EM which first requires the identification of optimal vitrification conditions. The original methods for frozen-hydrated specimen preparation developed over 40\ua0years ago still enjoy widespread use today, although recent developments have set the scene for a future where more systematic and high-throughput approaches to the preparation of vitrified biomolecular complexes may be routinely employed. Here we summarize current approaches and ongoing innovations for the preparation of frozen-hydrated single particle specimens for cryo-EM, highlighting some of the commonly encountered problems and approaches that may help overcome these