75 research outputs found

    Distinct effects of rectum delineation methods in 3D-confromal vs. IMRT treatment planning of prostate cancer

    Get PDF
    BACKGROUND: The dose distribution to the rectum, delineated as solid organ, rectal wall and rectal surface, in 3D conformal (3D-CRT) and intensity-modulated radiotherapy treatment (IMRT) planning for localized prostate cancer was evaluated. MATERIALS AND METHODS: In a retrospective planning study 3-field, 4-field and IMRT treatment plans were analyzed for ten patients with localized prostate cancer. The dose to the rectum was evaluated based on dose-volume histograms of 1) the entire rectal volume (DVH) 2) manually delineated rectal wall (DWH) 3) rectal wall with 3 mm wall thickness (DWH(3)) 4) and the rectal surface (DSH). The influence of the rectal filling and of the seminal vesicles' anatomy on these dose parameters was investigated. A literature review of the dose-volume relationship for late rectal toxicity was conducted. RESULTS: In 3D-CRT (3-field and 4-field) the dose parameters differed most in the mid-dose region: the DWH showed significantly lower doses to the rectum (8.7% ± 4.2%) compared to the DWH(3 )and the DSH. In IMRT the differences between dose parameters were larger in comparison with 3D-CRT. Differences were statistically significant between DVH and all other dose parameters and between DWH and DSH. Mean doses were increased by 23.6% ± 8.7% in the DSH compared to the DVH in the mid-dose region. Furthermore, both the rectal filling and the anatomy of the seminal vesicles influenced the relationship between the dose parameters: a significant correlation of the difference between DVH and DWH and the rectal volume was seen in IMRT treatment. DISCUSSION: The method of delineating the rectum significantly influenced the dose representation in the dose-volume histogram. This effect was pronounced in IMRT treatment planning compared to 3D-CRT. For integration of dose-volume parameters from the literature into clinical practice these results have to be considered

    Plasma triglyceride and high density lipoprotein cholesterol are poor surrogate markers of pro-atherogenic chylomicron remnant homeostasis in subjects with the metabolic syndrome

    Get PDF
    Background: Subjects with metabolic syndrome (MetS) exhibit impaired lipoprotein metabolism and have an increased risk of cardiovascular disease. Although the risk is attributed primarily to the risk associated with individual components, it is also likely affected by other associated metabolic defects. Remnants of postprandial lipoproteins show potent atherogenicity in cell and animal models of insulin resistance and in pre-diabetic subjects with postprandial dyslipidemia. However, few studies have considered regulation of chylomicron remnant homeostasis in MetS per se. This study measured the plasma concentration in Caucasian men and women of small dense chylomicrons following fasting and explored associations with metabolic and anthropometric measures. Methods: A total of 215 Australian Caucasian participants (me dianage62years) were investigated. Of them, 40 participants were classified as having MetS. Apolipoprotein (apo) B-48, an exclusive marker of chylomicrons, metabolic markers and anthropometric measures were determined following an overnight fast.Results: The fasting apo B-48 concentration was 40 % higher in subjects with MetS than those without MetS. In all subjects, triglyceride ( r =0.445, P < 0.0005), non-HDL cholesterol ( r =0.28, P < 0.0005) and HDL cholesterol concentration ( r = − 0.272, P < 0.0005) were weakly associated with apo B-48 concentration. In subjects with MetS, the association of apo B-48 with triglyceride and non-HDL cholesterol was enhanced, but neither were robust markers of elevated apo B-48 in MetS (r = 0.618 and r = 0.595 respectively). There was no association between apo B-48 and HDL cholesterol in subjects with MetS. Conclusion: This study demonstrates a substantial accumulation of pro-atherogenic remnants in subjects with MetS. We have shown that in a Caucasian cohort, the fasting plasma concentration of triglyceride or HDL/non-HDL cholesterol serves as poor surrogate markers of atherogenic chylomicron remnants. These findings suggest that subjects with MetS exhibit a chronic defect in chylomicron metabolism that is likely to contribute to their increased CV risk

    Contribution of Human Muscle-Derived Cells to Skeletal Muscle Regeneration in Dystrophic Host Mice

    Get PDF
    Background: Stem cell transplantation is a promising potential therapy for muscular dystrophies, but for this purpose, the cells need to be systemically-deliverable, give rise to many muscle fibres and functionally reconstitute the satellite cell niche in the majority of the patient's skeletal muscles. Human skeletal muscle-derived pericytes have been shown to form muscle fibres after intra-arterial transplantation in dystrophin-deficient host mice. Our aim was to replicate and extend these promising findings.Methodology/Principal Findings: Isolation and maintenance of human muscle derived cells (mdcs) was performed as published for human pericytes. Mdscs were characterized by immunostaining, flow cytometry and RT-PCR; also, their ability to differentiate into myotubes in vitro and into muscle fibres in vivo was assayed. Despite minor differences between human mdcs and pericytes, mdscs contributed to muscle regeneration after intra-muscular injection in mdx nu/nu mice, the CD56+ sub-population being especially myogenic. However, in contrast to human pericytes delivered intra-arterially in mdx SCID hosts, mdscs did not contribute to muscle regeneration after systemic delivery in mdx nu/nu hosts.Conclusions/Significance: Our data complement and extend previous findings on human skeletal muscle-derived stem cells, and clearly indicate that further work is necessary to prepare pure cell populations from skeletal muscle that maintain their phenotype in culture and make a robust contribution to skeletal muscle regeneration after systemic delivery in dystrophic mouse models. Small differences in protocols, animal models or outcome measurements may be the reason for differences between our findings and previous data, but nonetheless underline the need for more detailed studies on muscle-derived stem cells and independent replication of results before use of such cells in clinical trials
    • …
    corecore