9 research outputs found

    Mechanical Properties of Plant Underground Storage Organs and Implications for Dietary Models of Early Hominins

    Get PDF
    The diet of early human ancestors has received renewed theoretical interest since the discovery of elevated d13C values in the enamel of Australopithecus africanus and Paranthropus robustus. As a result, the hominin diet is hypothesized to have included C4 grass or the tissues of animals which themselves consumed C4 grass. On mechanical grounds, such a diet is incompatible with the dental morphology and dental microwear of early hominins. Most inferences, particularly for Paranthropus, favor a diet of hard or mechanically resistant foods. This discrepancy has invigorated the longstanding hypothesis that hominins consumed plant underground storage organs (USOs). Plant USOs are attractive candidate foods because many bulbous grasses and cormous sedges use C4 photosynthesis. Yet mechanical data for USOs—or any putative hominin food—are scarcely known. To fill this empirical void we measured the mechanical properties of USOs from 98 plant species from across sub-Saharan Africa. We found that rhizomes were the most resistant to deformation and fracture, followed by tubers, corms, and bulbs. An important result of this study is that corms exhibited low toughness values (mean = 265.0 J m-2) and relatively high Young’s modulus values (mean = 4.9 MPa). This combination of properties fits many descriptions of the hominin diet as consisting of hard-brittle objects. When compared to corms, bulbs are tougher (mean = 325.0 J m-2) and less stiff (mean = 2.5 MPa). Again, this combination of traits resembles dietary inferences, especially for Australopithecus, which is predicted to have consumed soft-tough foods. Lastly, we observed the roasting behavior of Hadza hunter-gatherers and measured the effects of roasting on the toughness on undomesticated tubers. Our results support assumptions that roasting lessens the work of mastication, and, by inference, the cost of digestion. Together these findings provide the first mechanical basis for discussing the adaptive advantages of roasting tubers and the plausibility of USOs in the diet of early hominins

    Microhardness evaluation around composite restorations using fluoride-containing adhesive systems Avaliação da microdureza ao redor de restaurações de compósito confeccionadas com sistemas adesivos contendo fluoretos

    No full text
    The purpose of this study was to evaluate the microhardness of dental enamel around composite restorations bonded with fluoride-containing adhesive systems (FCAS), after thermo- and pH-cycling protocols. Standardized cylindrical cavities were prepared on enamel surfaces of 175 dental fragments, which were randomly assigned into seven experimental groups (n=25). Four groups used FCAS: Optibond Solo (OS); Prime&Bond 2.1 (PB); Syntac Sprint (SS) and Tenure Quick (TC). Other groups consisted of "Sandwich" technique restoration (STR) (glass ionomer liner + hydrophobic adhesive resin /restorative composite) or used Single Bond with (SB) or without (SBWC) cycling protocols. Adhesive systems were applied according to manufacturers' instructions and cavities were restored with a microfilled composite (Durafill VS). After finishing and polishing, all groups were submitted to 1,000 thermal cycles (5 ºC and 55 ºC) and to demineralization (pH 4.3) and remineralization (pH 7.0) cycling protocols, except for SBWC group. The Knoop microhardness of enamel surfaces were measured around restorations. Indentations were recorded at 150, 300 and 450-mm from the cavity wall. Data were analyzed by two-way ANOVA and Duncan's Test (a=0.05%). Means ± SD of enamel microhardness for the groups were (Kg/mm²): SBWC: 314.50 ± 55.93ª ; SB: 256.78 ± 62.66b; STR: 253.90 ± 83.6b; TQ: 243.93 ± 68.3b; OS: 227.97 ± 67.1c; PB: 213.30 ± 91.3d; SS: 208.73 ± 86.6d. Means ± SD of microhardness for the distances 150, 300, 450mm from the cavity wall were, respectively: 234.46 ± 77.81ª; 240.24 ± 85.12ª; 262.06 ± 79.46b. SBWC group, which was not submitted to thermo- and pH-cycling protocols, showed the highest enamel microhardness mean value and the FCAS resulted in lower microhardness values. At 450 mm from the cavity wall, the enamel microhardness increased significantly.<br>O objetivo deste estudo foi avaliar a microdureza do esmalte dental ao redor de restaurações em compósito que utilizaram sistemas adesivos contendo fluoretos (FCAS), após tratamento dessas superfícies restauradas aos protocolos de ciclagem térmica e pH. Cavidades cilíndricas padronizadas foram preparadas em 175 superfícies de esmalte de fragmentos dentais, os quais foram aleatoriamente divididos em sete grupos (n=25). Quatro grupos utilizaram os FCAS: Optibond Solo (OS); Prime&Bond 2.1 (PB); Syntac Sprint (SS) e Tenure Quick (TC). Outros grupos consistiram em restaurações "Sandwich" (STR - ionômero de vidro como base + restauração em composíto) ou utilizaram Single Bond com (SB) ou sem (SBWC) ciclagens. Os sistemas adesivos foram aplicados segundo as instruções dos fabricantes e as cavidades restauradas com compósito microparticulado (Durafill VS). Após o acabamento e polimento, todos grupos foram submetidos a 1.000 ciclos térmicos (5 ºC e 55 ºC) e a um protocolo de ciclagem de pH (desmineralização-pH 4,3 e remineralização-pH 7,0), exceto para o grupo SBWC. A microdureza das superfícies de esmalte foi mensurada ao redor das restaurações. Indentações foram feitas nas distâncias de 100, 300 and 450-mm da parede cavitária. Os dados foram analisados pela ANOVA (2 fatores) and Teste de Duncan (5%). Os valores médios ± DP da microdureza do esmalte para os grupos foram (Kg/mm²): SBWC: 314,50 ± 55,93ª ; SB: 256,78 ± 62,66b; STR: 253,90 ± 83,6b; TQ: 243,93 ± 68,3b; OS: 227,97 ± 67,1c; PB: 213,30 ± 91,3d; SS: 208,73 ± 86,6d. As médias ± DP de microdureza para as distâncias 150, 300, 450 mm da parede cavitária foram, respectivamente: 234,46 ± 77,81ª; 240,24 ± 85,12ª; 262,06 ± 79,46b. O grupo SBWC que não foi submetido aos protocolos de ciclagem térmica e pH mostrou a maior média de microdureza do esmalte e os FCAS resultaram nos menores valores de microdureza. Na distância de 450 mm da parede cavitária, a microdureza apresentou aumento significativo
    corecore