336 research outputs found

    Paraoxonase-1 is related to inflammation, fibrosis and PPAR delta in experimental liver disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Paraoxonase-1 (PON1) is an antioxidant enzyme synthesized by the liver. It protects against liver impairment and attenuates the production of the pro-inflammatory monocyte chemoattractant protein-1 (MCP-1). We investigated the relationships between hepatic PON1 and MCP-1 expression in rats with liver disease and explored the possible molecular mechanisms involved.</p> <p>Methods</p> <p>CCl<sub>4 </sub>was administered for up to 12 weeks to induce liver damage. Serum and hepatic levels of PON1 and MCP-1, their gene and protein expression, nuclear transcription factors, and histological and biochemical markers of liver impairment were measured.</p> <p>Results</p> <p>High levels of PON1 and MCP-1 expression were observed at 12<sup>th </sup>week in the hepatocytes surrounding the fibrous septa and inflammatory areas. CCl<sub>4</sub>-administered rats had an increased hepatic PON1 concentration that was related to decreased gene transcription and inhibited protein degradation. Decreased PON1 gene transcription was associated with PPARδ expression. These changes were accompanied by increased hepatic MCP-1 concentration and gene expression. There were significant direct relationships between hepatic PON1 and MCP-1 concentrations (P = 0.005) and between PON1 and the amount of activated stellate cells (P = 0.001).</p> <p>Conclusion</p> <p>Our results from this experimental model suggest a hepato-protective role for PON1 against inflammation, fibrosis and liver disease mediated by MCP-1.</p

    Ameliorated ConA-Induced Hepatitis in the Absence of PKC-theta

    Get PDF
    Severe liver injury that occurs when immune cells mistakenly attack an individual's own liver cells leads to autoimmune hepatitis. In mice, acute hepatitis can be induced by concanavalin A (ConA) treatment, which causes rapid activation of CD1d-positive natural killer (NK) T cells. These activated NKT cells produce large amounts of cytokines, which induce strong inflammation that damages liver tissues. Here we show that PKC-θ−/− mice were resistant to ConA-induced hepatitis due to essential function of PKC-θ in NKT cell development and activation. A dosage of ConA (25 mg/kg) that was lethal to wild-type (WT) mice failed to induce death resulting from liver injury in PKC-θ−/− mice. Correspondingly, ConA-induced production of cytokines such as IFNγ, IL-6, and TNFα, which mediate the inflammation responsible for liver injury, were significantly lower in PKC-θ−/− mice. Peripheral NKT cells had developmental defects at early stages in the thymus in PKC-θ−/− mice, and as a result their frequency and number were greatly reduced. Furthermore, PKC-θ−/− bone marrow adoptively transferred to WT mice displayed similar defects in NKT cell development, suggesting an intrinsic requirement for PKC-θ in NKT cell development. In addition, upon stimulation with NKT cell-specific lipid ligand, peripheral PKC-θ−/− NKT cells produced lower levels of inflammatory cytokines than that of WT NKT cells, suggesting that activation of NKT cells also requires PKC-θ. Our results suggest PKC-θ is an essential molecule required for activation of NKT cell to induce hepatitis, and thus, is a potential drug target for prevention of autoimmune hepatitis

    TGF β1 and PDGF AA override Collagen type I inhibition of proliferation in human liver connective tissue cells

    Get PDF
    BACKGROUND: A marked expansion of the connective tissue population and an abnormal deposition of extracellular matrix proteins are hallmarks of chronic and acute injuries to liver tissue. Liver connective tissue cells, also called stellate cells, derived from fibrotic liver have been thoroughly characterized and correspond phenotypically to myofibroblasts. They are thought to derive from fat-storing Ito cells in the perisinusoidal space and acquire a contractile phenotype when activated by tissue injury. In the last few years it has become evident that several peptide growth factors such as PDGF AA and TGF-β are involved in the development of fibrosis by modulating myofibroblast proliferation and collagen secretion. The fact that during the development of chronic fibrosis there is concomitant deposition of collagen, a known inhibitory factor, and sustained cell proliferation, raises the possibility that stellate cells from chronic liver fibrosis patients fail to respond to normal physiologic controls. METHODS: In this study we address whether cells from fibrotic liver patients respond to normal controls of proliferation. We compared cell proliferation of primary human liver connective tissue cells (LCTC) from patients with liver fibrosis and skin fibroblasts (SF) in the presence of collagens type I and IV; TGF-β, PDGF AA and combinations of collagen type I and TGF-β or PDGF AA. RESULTS: Our results indicate that despite displaying normal contact and collagen-induced inhibition of proliferation LCTC respond more vigorously to lower concentrations of PDGF AA. In addition, we show that collagen type I synergizes with growth factors to promote mitogenesis of LCTC but not SF. CONCLUSIONS: The synergistic interaction of growth factors and extracellular matrix proteins may underlie the development of chronic liver fibrosis

    Broad-Spectrum Matrix Metalloproteinase Inhibition Curbs Inflammation and Liver Injury but Aggravates Experimental Liver Fibrosis in Mice

    Get PDF
    Background Liver fibrosis is characterized by excessive synthesis of extracellular matrix proteins, which prevails over their enzymatic degradation, primarily by matrix metalloproteinases (MMPs). The effect of pharmacological MMP inhibition on fibrogenesis, however, is largely unexplored. Inflammation is considered a prerequisite and important co-contributor to fibrosis and is, in part, mediated by tumor necrosis factor (TNF)-α-converting enzyme (TACE). We hypothesized that treatment with a broad-spectrum MMP and TACE-inhibitor (Marimastat) would ameliorate injury and inflammation, leading to decreased fibrogenesis during repeated hepatotoxin-induced liver injury.Methodology/Principal Findings Liver fibrosis was induced in mice by repeated carbon tetrachloride (CCl4) administration, during which the mice received either Marimastat or vehicle twice daily. A single dose of CCl4was administered to investigate acute liver injury in mice pretreated with Marimastat, mice deficient in Mmp9, or mice deficient in both TNF-α receptors. Liver injury was quantified by alanine aminotransferase (ALT) levels and confirmed by histology. Hepatic collagen was determined as hydroxyproline, and expression of fibrogenesis and fibrolysis-related transcripts was determined by quantitative reverse-transcription polymerase chain reaction. Marimastat-treated animals demonstrated significantly attenuated liver injury and inflammation but a 25% increase in collagen deposition. Transcripts related to fibrogenesis were significantly less upregulated compared to vehicle-treated animals, while MMP expression and activity analysis revealed efficient pharmacologic MMP-inhibition and decreased fibrolysis following Marimastat treatment. Marimastat pre-treatment significantly attenuated liver injury following acute CCl4-administration, whereas Mmp9 deficient animals demonstrated no protection. Mice deficient in both TNF-α receptors exhibited an 80% reduction of serum ALT, confirming the hepatoprotective effects of Marimastat via the TNF-signaling pathway.Conclusions/Significance Inhibition of MMP and TACE activity with Marimastat during chronic CCl4administration counterbalanced any beneficial anti-inflammatory effect, resulting in a positive balance of collagen deposition. Since effective inhibition of MMPs accelerates fibrosis progression, MMP inhibitors should be used with caution in patients with chronic liver diseases

    Simulating the midlatitude atmospheric circulation: what might we gain from high-resolution modeling of air-sea interactions?

    Get PDF
    Purpose of Review. To provide a snapshot of the current research on the oceanic forcing of the atmospheric circulation in midlatitudes and a concise update on previous review papers. Recent findings. Atmospheric models used for seasonal and longer timescales predictions are starting to resolve motions so far only studied in conjunction with weather forecasts. These phenomena have horizontal scales of ~ 10–100 km which coincide with energetic scales in the ocean circulation. Evidence has been presented that, as a result of this matching of scale, oceanic forcing of the atmosphere was enhanced in models with 10–100 km grid size, especially at upper tropospheric levels. The robustness of these results and their underlying mechanisms are however unclear. Summary. Despite indications that higher resolution atmospheric models respond more strongly to sea surface temperature anomalies, their responses are still generally weaker than those estimated empirically from observations. Coarse atmospheric models (grid size greater than 100 km) will miss important signals arising from future changes in ocean circulation unless new parameterizations are developed

    Role of oxidative stress and intracellular glutathione in the sensitivity to apoptosis induced by proteasome inhibitor in thyroid cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The proteasome inhibitor bortezomib has shown impressive clinical activity alone and in combination with conventional and other novel agents for the treatment of multiple myeloma (MM) and some solid cancers. Although bortezomib is known to be a selective proteasome inhibitor, the downstream mechanisms of cytotoxicity and drug resistance are poorly understood.</p> <p>Methods</p> <p>Proteasome activity, intracellular glutathione (GSH) and ROS levels, as well as activities of GSH synthesis enzymes were measured using spectrophotometric methods. Cell death was analyzed using flow cytometry and caspase activity assay. The expression level of GSH synthesis enzymes were measured using real-time RT-PCR.</p> <p>Results</p> <p>At concentrations that effectively inhibited proteasome activity, bortezomib induced apoptosis in FRO cells, but not in ARO cells. Bortezomib elevated the amount of glutathione (GSH) and the treatment with bortezomib increased the level of mRNA for GCL, a rate-limiting enzyme in glutathione synthesis. Furthermore, depletion of GSH increases apoptosis induced by bortezomib, in contrast, repletion of GSH decreases bortezomib-mediated cell death.</p> <p>Conclusion</p> <p>GSH protects cells from proteasome inhibition-induced oxidative stress and glutathione-dependent redox system might play an important role in the sensitivity to proteasome inhibition-induced apoptosis.</p

    Two-photon dual imaging platform for in vivo monitoring cellular oxidative stress in liver injury

    Get PDF
    Oxidative stress reflects an imbalance between reactive oxygen species (ROS) and antioxidants, which has been reported as an early unifying event in the development and progression of various diseases and as a direct and mechanistic indicator of treatment response. However, highly reactive and short-lived nature of ROS and antioxidant limited conventional detection agents, which are influenced by many interfering factors. Here, we present a two-photon sensing platform for in vivo dual imaging of oxidative stress at the single cell-level resolution. This sensing platform consists of three probes, which combine the turn-on fluorescent transition-metal complex with different specific responsive groups for glutathione (GSH), hydrogen peroxide (H2O2) and hypochlorous acid (HOCl). By combining fluorescence intensity imaging and fluorescence lifetime imaging, these probes totally remove any possibility of crosstalk from in vivo environmental or instrumental factors, and enable accurate localization and measurement of the changes in ROS and GSH within the liver. This precedes changes in conventional biochemical and histological assessments in two distinct experimental murine models of liver injury. The ability to monitor real-time cellular oxidative stress with dual-modality imaging has significant implications for high-accurate, spatially configured and quantitative assessment of metabolic status and drug response

    The liver is a common non-exocrine target in primary Sjögren's syndrome: A retrospective review

    Get PDF
    BACKGROUND: The autoimmune destruction of exocrine glands that defines primary Sjögren's syndrome (1°SS) often extends to non-exocrine organs including the liver. We aimed to determine the prevalence of liver disease in patients with 1°SS and to evaluate the association of this complication with other non-exocrine features and serologic markers of autoimmunity and systemic inflammation. METHODS: We reviewed 115 charts of patients with 1°SS and further analyzed the 73 cases that fulfilled the European Epidemiology Center Criteria, seeking evidence for clinical and subclinical liver disease. RESULTS: Liver function tests had been determined in 59 of the 73 patients. Of those, 29 patients (49.1%) had abnormal liver function tests including 20.3% with clinically overt hepatic disease. Liver disease was the most common non-exocrine feature in this cohort. Risk factors for abnormal liver function tests were distributed similarly between the patients with and without liver disease. In 60% of patients with abnormal liver function tests no explanation for this complication was found except for 1°SS. Liver involvement was significantly more common in 1°SS patients who also had evidence of lung, kidney and hematological abnormalities. Patients with abnormal liver function tests were also more likely to have an elevated sedimentation rate and a positive anti-ENA during the course of their disease. CONCLUSION: Liver involvement is a common complication in 1°SS. Its presence correlates with systemic disease. We consider that this complication should be routinely sought in patients with 1°SS, especially when a positive anti-ENA or evidence of systemic inflammation is found

    Deadly liaisons: fatal attraction between CCN matricellular proteins and the tumor necrosis factor family of cytokines

    Get PDF
    Recent studies have revealed an unexpected synergism between two seemingly unrelated protein families: CCN matricellular proteins and the tumor necrosis factor (TNF) family of cytokines. CCN proteins are dynamically expressed at sites of injury repair and inflammation, where TNF cytokines are also expressed. Although TNFα is an apoptotic inducer in some cancer cells, it activates NFκB to promote survival and proliferation in normal cells, and its cytotoxicity requires inhibition of de novo protein synthesis or NFκB signaling. The presence of CCN1, CCN2, or CCN3 overrides this requirement and unmasks the apoptotic potential of TNFα, thus converting TNFα from a proliferation-promoting protein into an apoptotic inducer. These CCN proteins also enhance the cytotoxicity of other TNF cytokines, including LTα, FasL, and TRAIL. Mechanistically, CCNs function through integrin α6β1 and the heparan sulfate proteoglycan (HSPG) syndecan-4 to induce reactive oxygen species (ROS) accumulation, which is essential for apoptotic synergism. Mutant CCN1 proteins defective for binding α6β1-HSPGs are unable to induce ROS or apoptotic synergism with TNF cytokines. Further, knockin mice that express an α6β1-HSPG-binding defective CCN1 are blunted in TNFα- and Fas-mediated apoptosis, indicating that CCN1 is a physiologic regulator of these processes. These findings implicate CCN proteins as contextual regulators of the inflammatory response by dictating or enhancing the cytotoxicity of TNFα and related cytokines

    Negative Regulation of Schistosoma japonicum Egg-Induced Liver Fibrosis by Natural Killer Cells

    Get PDF
    The role of natural killer (NK) cells in infection-induced liver fibrosis remains obscure. In this study, we elucidated the effect of NK cells on Schistosoma japonicum (S. japonicum) egg-induced liver fibrosis. Liver fibrosis was induced by infecting C57BL/6 mice with 18–20 cercariae of S. japonicum. Anti-ASGM1 antibody was used to deplete NK cells. Toll-like receptor 3 ligand, polyinosinic-polycytidylic acid (poly I∶C) was used to enhance the activation of NK cells. Results showed that NK cells were accumulated and activated after S. japonicum infection, as evidenced by the elevation of CD69 expression and IFN-γ production. Depletion of NK cells markedly enhanced S. japonicum egg-induced liver fibrosis. Administration of poly I∶C further activated NK cells to produce IFN-γ and attenuated S. japonicum egg-induced liver fibrosis. The observed protective effect of poly I∶C on liver fibrosis was diminished through depletion of NK cells. Disruption of IFN-γ gene enhanced liver fibrosis and partially abolished the suppression of liver fibrosis by poly I∶C. Moreover, expression of retinoic acid early inducible 1 (RAE 1), the NKG2D ligand, was detectable at high levels on activated hepatic stellate cells derived from S. japonicum-infected mice, which made them more susceptible to hepatic NK cell killing. In conclusion, our findings suggest that the activated NK cells in the liver after S. japonicum infection negatively regulate egg-induced liver fibrosis via producing IFN-γ, and killing activated stellate cells
    corecore